and-the-winner-of-the-most-unusual-oscar-swag-of-2020-is.

While only one nominee in the acting and directing categories of the Academy Awards will walk home with an Oscar—ties are very rare—winners and losers alike will receive a gift bag. This being Hollywood, the swag is lavish—last year’s gift bags had vouchers for a luxury cruise to the Galapagos Islands in the company of a private chef. In what is probably a first, this year’s bags will include a medical device that costs a fraction of most of the other gifts: The Peezy Midstream urine-collection device that dramatically reduces false positives and contaminated samples. Primary care physician Dr. Vincent Forte, the inventor of the device, hopes that the seemingly simple molded plastic part hobnobbing with luxe jewelry and artisanal cannabis-infused chocolates will draw attention to the slapdash approach to detection and treatment of urinary tract infections (UTIs) among women. The condition often goes undiagnosed, misdiagnosed or inaccurately treated because of hit-or-miss urine sample collection procedures, according to Forte.

The swag from Forte Medical will come with information on how women can learn more about the impact of UTIs. About seven million women in the United States alone contract the disease each year, according to the London-based company. “Urine is the window into your health. It’s the most common routine diagnostic procedure in medicine, yet there is no protocol for its collection,” said Forte Medical CEO Giovanna Forte. “We want to change the hearts and minds of policymakers and put this right.”

Peezy Midstream urine collection device
The Peezy Midstream urine-collection device dramatically reduces false positives and contaminated samples. Image courtesy Forte Medical.

Peezy Midstream reduced false-positive dipped urines by almost 70% at one British clinic, according to Forte Medical. The device also reportedly slashes specimen contamination to between 1 and 2.5%. The UK National Institute for Health and Clinical Excellence said in May 2019 that Peezy Midstream “is the only urine collection method that meets Public Health England’s UK standards for microbiology investigation of urine.”

The UK company is opening a satellite office in Irvine, CA, one of the premier medtech hubs in the United States. The device is currently marketed in the United States and Canada by Owen Mumford.

I have to wonder: Will the unusual gift get a name-check during one of the acceptance speeches? And, not to diminish the value of the device, but aren’t you relieved that Ricky Gervais is not hosting the ceremony? One cringes at the prospect of what he might do with this material.

how-to-choose-the-right-plastic-prototyping-method

What is the best prototyping method for a plastic product? Well, that depends. A panel discussion at Medical Design & Manufacturing (MD&M) West in Anaheim, CA, next month will explore the various options and discuss the advantages and limitations of each. In advance of that Tech Talk session, panelist Michael Paloian, President of Integrated Design Systems Inc., shared his insights with PlasticsToday. An industrial designer and plastics engineer with hundreds of products under his belt, Paloian will be joined at the session, scheduled for Feb. 12 at 8:30 AM, by panelists Rick Puglielli, President, Promold Plastics; Albert McGovern, Director of Mechanical Engineering, Shure Inc.; and George Wilson, Senior Program Manager, ARRK Product Development Group USA. MD&M West, co-located with PLASTEC West, comes to the Anaheim Convention Center from Feb. 11 to 13, 2020.

young engineer

The panelists will discuss the use of 3D printing for prototyping, of course, but they will also delve into CNC machining, polyurethane casting, limited production runs of injection molded prototyping and other technologies, said Paloian. The best process ultimately depends on the designer’s objectives. He or she should ask the following questions before settling on a prototyping process, recommends Paloian.

  • What’s the purpose of the prototype—if it’s for show and tell, don’t bother spending a lot of money replicating details.
  • What’s the lead time? If you need something really fast, that will dictate the optimal process.
  • How large (or small) is the part?
  • What manufacturing process—injection or blow molding, thermoforming, extrusion—are you trying to replicate? That will have some effect on the prototyping process you select.
  • What are the tolerances, material properties, level of detail, quantities?
  • What are you intending to test or evaluate?

“If properties are a critical aspect of your evaluation and testing, CNC machining the part from a particular resin will give you a better indication of how the product will perform than 3D printing,” said Paloian. Don’t be misled by claims of material similarity. “If they tell you it’s similar to ABS or similar to PE, that leaves a lot of gray area. ‘Similar to’ means nothing,” stressed Paloian.

If you’re more interested in the structural behavior of a detail on a part—say, the front bezel of an ultrasound scanner—you could 3D print or machine that portion of the part and subject it to the loads to which it might be exposed, said Paloian. “But if you’re trying to evaluate the wear resistance of a material, for example, you really have to use the material in question, or your evaluations will be erroneous.”

But if your key goal is the best design replication at the lowest cost, it’s hard to beat 3D printing. Then the question becomes, which type of 3D printing?

The three most common platforms are selective laser sintering (SLS), stereolithography (SLA) and fused deposition modeling (FDM), according to Paloian, but SLS is fast becoming the preferred platform. “According to one survey, its market share in prototyping will almost triple over the next 10 years, from about 13% to 33%, while SLA and FDM will shrink.” Materials are playing a big role in that.

“SLA typically is based on a UV-cured acrylic or epoxy, and your properties are limited. There’s no way you’re going to replicate PP or PE with an SLA part,” said Paloian. “With SLS, you’re basically fusing together a powder, so you can use the actual resin, similar to FDM, for testing.” FDM, which Paloian likens to stacking Lincoln logs on top of each other to create the part, lacks resolution. “SLS gives you the best of both worlds—the fine resolution of SLA and the material selection of FDM,” said Paloian.

At the end of the day, understanding the pros and cons of each prototyping process will steer design engineers toward the best option for achieving their objectives. And that won’t always be 3D printing, added Paloian.

Image: Yakobchuk Olena/Adobe Stock

top-10-electronic-enabled-tech-highlights-from-ces-2020

Not all cool tech involved robots and autonomous cars. Here’s a list of the other electronic tech featured at the show.

  • This year’s Consumer Electronics Show (CES) 2020 featured a range of marvals enabled by electronic technologies covering application areas from smart cities, AI edge intelligence, body haptics, security systems, real-time accident reports, uncooled thermo cameras, wearables and more.

    Here are the top 10 products and technologies that piqued the interest of the Design News editorial staff.

  • Smart Cities

    Why do major Japanese car manufacturers like to build smart homes and now cities? Several years ago, Honda built a zero-net energy smart home in partnership with UC-Davis. At this year’s CES, Toyota announced it will build a smart city to test their AI, robots and self-driving cars. Toyota’s Woven City will be built at the foothills of Mt. Fuji in Japan. The city will be the world’s first urban incubator dedicated to the advancement of all aspects of mobility, claims Toyota.

    The project is a collaboration between the Japanese carmaker and the Danish architecture firm Bjarke Ingels Group (BIG). Houses in Woven City will have in-home robotics to help with the more mundane tasks of daily life. The homes will have full-connectivity, which will be needed for the sensor-based AI to automate many household chores, like restocking the refrigerator and taking out the trash. Power storage units and water purification systems will be hidden beneath the ground.

  • Intelligence At The Edge

    Blaize is a computing company that optimizes AI at scale wherever data is collected and processed from the edge. The company enables a range of existing and new AI use cases in the automotive, smart vision, and enterprise computing segments. The company claims that developers can create new classes of products to bring the benefits of AI and machine learning to broad markets.

    The company has developed a fully programmable GSP architecture that utilizes task-level parallelism and streaming execution processing to take advantage of very low energy consumption, high performance and scalability. Blaize claims that, in comparison, existing GPUs and FPGAs exert a much higher energy price, while CPUs cost more and scale poorly, and all are subject to excessive latency due to their sequential execution processing architectures.

  • Full-Body Haptics Suit

    Haptics are all about the sense of touch. Now you can immerse your entire body – or at least 70 tactile points mainly around your torso – into the world of artificial experiences. The BHaptics Tacksuit provides an audio-to-haptic feature that converts sound into haptic feedbacks that are felt real time around your torso. For example, when a bomb explodes or you hear footsteps during a PC/VR game, you’ll feel the experience from the right direction. You’ll even be able to feel Samurai cuts and friendly hugs.

  • Security Comes In Many Forms

    There are many ways to protect your PC data and applications, from hardware encrypted portable storage devices, backup solutions, file repair software, and data recovery, to digital forensics services. SecureData provides both products and services in these areas. At CES, the company demonstrated a secure UBS drive which they claimed was the only hardware encrypted flash drive in the world with keypad and Bluetooth authentication.

  • Wireless Six-Degrees Of Freedom (6DOF)

    Atraxa’s system tracks 6DOF motion without the need for optical cameras or infrared markers to be placed around the room, or mounted externally to the XR headset or controller. And no line of sight—or wires—are required between the headset and controllers. Unhindered by wires or line-of-sight constraints, users can move freely in large spaces. Even move from room to room without any room mapping, or controller orienting (or reorienting) is required. Tracking starts immediately and lasts without interruption.

    The tech combines electromagnetic (EM) and inertial technologies into a single sensor-fusion tracking platform. The IMU (inertial measurement unit) returns acceleration and angular velocity data. The EM tracker delivers true position and orientation data; it also establishes the tracking volume and local coordinate system. Atraxa is comprised of two main components: a tracker module and receiver module. The tracker module houses the IMU and an EM transmitter coil that generates the magnetic field (i.e. the tracking volume). The tracker modules are embedded into the handheld controllers (or other peripherals).

  • Real-Time Accident Report

    Sooner or later, all of us get into an automotive accident. When that occures, wouldn’t it be great to have a record of what happened? Through the use of embedded acceleration sensors, MDGo generates a real-time report in the case of a car crash, detailing each occupant’s injuries by body region. The company’s technology enables accurate delivery of needed services and support by providing optimal medical care in the case of an emergency and supporting the claim process.

  • Smart Factory

    Could a factory think for itself or autonomously design a better car or aircraft? Can it eliminate waste? All of these questions fit into the realm of manufacturing intelligence. One company with experience in this area is Hexagon, claiming that their technologies are used to produce 85% of smartphones, 75% of cars and 90% of aircraft.

    Their Smart Factory approach aims to have fewer inputs, zero waste and high quality. All this is achieved through sensor, software and autonomous solutions that incorporates data feedback to improve work to boost efficiency, productivity, and quality across industrial and manufacturing.

  • A Cool “Uncooled” Methane Gas Detector

    The FLIR GF77 Gas Find IR is the company’s first uncooled thermal camera designed for detecting methane. This handheld camera offers inspection professionals the features they need to find potentially dangerous, invisible methane leaks at natural gas power plants, renewable energy production facilities, industrial plants, and other locations along a natural gas supply chain. The gas detector provides methane gas detection capability at roughly half the price of cooled gas inspection thermal cameras, to empower the oil and gas industry to reduce emissions and ensure a safer work environment.

  • IoT Arduino Adds LoRaWAN Connectivity

    You can now connect your sensors and actuators over long distances via the LoRa wireless protocol or throughout LoRaWAN networks. The Arduino MKR WAN 1310 board provides a practical and cost effective solution to add LoRa connectivity to projects  requiring low power. This open source board can be connected to: the Arduino IoT Cloud, your own LoRa network using the Arduino LoRa PRO Gateway, existing LoRaWAN infrastructure like The Things Network, or even other boards using the direct connectivity mode.

  • Wearables, Ingestibles, Invisibles

    One of the keys to a healthy life is nutrition. But what exactly constitutes ‘healthy’ food for a specific person? To answer that question, you need to measure and analyze the processes inside the complex human digestive system. Imec is working on prototype technology that is up to that task. It’s called ingestible sensors.

    The company also develops wearables for medical and consumer applications that enable reliable, continuous, comfortable, and long-term health monitoring & management. This includes high-accuracy & low-power biomedical sensing technologies sometimes embedded into fabrics.

John Blyler is a Design News senior editor, covering the electronics and advanced manufacturing spaces. With a BS in Engineering Physics and an MS in Electrical Engineering, he has years of hardware-software-network systems experience as an editor and engineer within the advanced manufacturing, IoT and semiconductor industries. John has co-authored books related to system engineering and electronics for IEEE, Wiley, and Elsevier.

researchers-are-looking-for-ways-to-make-vr-less-painful
Researchers are hoping to develop standards and guidelines for developers to reduce the risk of physical discomfort and injuries among VR users. (Image source: Oregon State University) 

Can the physical risk of using VR be reduced or eliminated altogether?

Ask anyone who has used VR for a prolonged period of time and they’ll tell you a big issue with a lot of VR hardware is comfort level. Bulky headsets and controllers with no ergonomic design can turn a fun immersive experience into a literal pain in no time. This becomes a big concern, not only to developers who want their hardware and software to be used for extended periods, but for users themselves who risk long term injury and health complications ranging from musculoskeletal issues to more commonly reported issues such as eye strain, nausea, and motion sickness.

Hardware developers have put a premium on ensuring comfort with their latest generation headsets, using techniques ranging from better balancing of internal components to using lighter-weight materials. But while other industries have guidelines and standards to fall back on, nothing of the sort exists for virtual and augmented reality.

Researchers from Oregon State University (OSU) and Northern Illinois University have been examining how common movements done in VR are contributing to muscle strain and discomfort in users. Their goal is to establish baselines for optimal object placement and angles in virtual environments so that developers can design games and other applications that cause minimum discomfort in users.

The results of their work are published in a recent study in the journal Applied Ergonomics.

“In computer users, the relationship between awkward postures or repeated movements and musculoskeletal disorders is well known, researcher Jay Kim of OSU’s College of Public Health and Human Sciences, said in a press statement. “We wanted to see how the VR compares to conventional computer-human interactions…We wanted to evaluate the effects of the target distances, locations, and sizes so we can better design these interfaces to reduce the risk for potential musculoskeletal injuries.”

According to Kim it can take as little as three minutes for shoulder discomfort to occur as a result of having to extend your arm straight out, as in many VR applications. He said that prolonged use of VR can lead to a range of problems from gorilla arm syndrome, to rotator cuff injuries, to neck strain and cervical spine damage.

For their study, Kim and his team focused primarily on neck and shoulder movements. The researchers had participants wearing Oculus Rift headsets perform tasks that involved them pointing to specific dots around a circle, or coloring in a designated area with their fingers. The participants’ movements were monitored using motion capture cameras. They were also outfitted with sensors measure electrical activity in their muscles.

The tests were repeated with the visuals placed at eye level, 15 degrees above and below eye level, and 30 degrees below eye level.

Results showed performance at the color task worsened when participants had to tilt their heads down at either 15 or 30 degrees. At 15 degrees above eye level, researchers noted the greatest degree of muscle activation, with the most discomfort occurring during the pointing task at 15 degrees above eye level.

“This result indicates that excessive vertical target locations should be avoided to reduce musculoskeletal discomfort and injury risks during VR interactions,” the study reads. “Based on relatively lower biomechanical exposures and trade-off between neck and shoulder postures, vertical target location between eye height and 15-degrees below eye height could be recommended for VR use.”

“Based on this study, we recommend that objects that are being interacted with more often should be closer to the body,” Kim said. “And objects should be located at eye level, rather than up and down.”

Kim said research like this is going to become increasingly important as VR and AR technologies proliferate into more and more industries. While entertainment remains VR’s largest use case – and the biggest area of concern in terms of safety and discomfort – more and more enterprise deployments of VR in areas such as industrial and medical training as well as in intricate applications such as virtual prototyping and design mean that VR-related injuries could quickly transition into a workplace hazard.

Data released by Statista forecasts the number of active VR users worldwide to be around 171 million as of 2018.

Kim and his team hope their work can help avoid the same mistakes that occurred as personal computers became more mainstream in the 80s and 90s, where a lack of awareness lead to a variety of health issues such as carpal tunnel syndrome and vision issues. “ With VR, we’d like to learn now rather than later,” he said.

Chris Wiltz is a Senior Editor at  Design News covering emerging technologies including AI, VR/AR, blockchain, and robotics

the-12-best-innovations-of-ces-2020

Forget new TVs and smartphones. These are the real game changers introduced at CES 2020.

  • Now that the smoke is cleared from CES 2020, we can take a step back and see which technologies were the real innovations of 2020. Let’s be honest, CES can be a black hole of vaporware, false promises, and concepts intended to be just that.

    We’ve compiled a list of our favorite technologies introduced at CES 2020 – innovations that we’re sure will be having a lasting impact in 2020 and beyond.

  • AerNos AerSIP Gas Sensor

    The AerSIP from AerNos is a 5 x 5-mm, mulit-gas sensing module that combines nanotechnology and machine learning algorithms to monitor indoor and outdoor air quality. The system-in-package (SIP) is an embedded plug-and-play solution that can be integrated into wearables, mobile devices, and other IoT devices and is capable of detecting hazardous gases and other dangers at parts per billion levels.

    (Image source: AerNos/CES)

  • AMD Ryzen 4000 Series Mobile Processor

    AMD’s Ryzen 4000 could be a literal game changer for high-end laptops users – particularly gamers and designers. AMD says its new Ryzen 4000 series is the world’s first 7-nanometer laptop processor. Designed for ultra-thin laptops, the Ryzen 4000 series features up to 8 cores and 16 threads and configurable 15W thermal design power. AMD pledges the Ryzen 4000 series offers up to four percent greater single-thread performance and up to 90 percent faster multithreaded performance than its competitors, as well as up to 18 percent faster graphics performance over competing chips.

    (Image source: AMD)

  • Atmosic Technologies M3 Battery-Free Bluetooth 5 SoC

    Atmosic says its M3 Battery-Free Bluetooth 5 SoC uses so little power that it can even eliminate the need for battery power entirely in devices such as wearables, keyboards, mice, asset trackers, beacons, and remotes. The M3 integrates Atmosic’s Lowest Power Radio, On-demand Wake-Up, and Managed Energy Harvesting technologies to deliver what the company says is 10 to 100 times lower power than other SoCs, while still complying with Bluetooth standards. The M3’s radio uses two “ears” – one for listening in a low-power state to perceive incoming commands, and another that only wakes when alerted. The SoC uses energy harvesting technology to gather power from radio frequency, photovoltaic, thermal, and motion.

    (Image source: Atmosic)

  • Bot3 Zen-P VSLAM Deep Learning Module

    Bot3‘s Zen-P VSLAM Deep Learning module integrates visual simultaneous localization and mapping (VSLAM) technology (a version of the same technology used in autonomous vehicles) into mobile robots ranging from industrial machines to smart home products. Bot3’s image processing algorithm, Pascal, allows for autonomous navigation without tracks as well as indoor mapping and positioning. (for instances such as warehouse applications).

    (Image source: Bot3)

  • BrainCo BrainRobotics Prosthetic Hand

    Many companies have been developing mind-controlled prosthetics for amputees and other disabled patients. What separates the prosthetic hand developed by BrainRobotics is the integration of AI technology. The BrainRobotics hand utilizes machine learning to allow the hand and its user to learn from each other over time – leading to more lifelike movements. The company is aiming to provide accurate and reliable prosthetics and at affordable price for all patients. BrainRobotics is a subsidiary of BrainCo, a software developer focused on brainwave measuring and monitoring.

    (Image source: BrainCo/BrainRobotics)

  • Fluent.ai MultiWake Word and Voice Control Engine

    Fluent.ai is a technology company focused on AI for voice interface and speech recognition. The company’s Multi-Wake Word and Voice Control Engine is an edge-based, noise robust, and multilingual speech technology that consumes minimal power and storage, allowing it to be embedded in small devices. The solution is Cortex M4-based and supports four separate wake words and 100 multilingual commands, according to Fluent.ai.

    Fluent.ai has recently partnered with semiconductor designer Ambiq Micro to implement Fluent.ai’s software solutions into Ambiq’s ultra-small footprint, low-power microcontrollers. Ambiq’s MCU supports frequencies up to 96 MHz, and Fluent.ai’s solution requires only 16 MHz from the MCU. The new partnership means Fluent.ai and Ambiq will be releasing MCUs for OEMs looking for an easy way to add speech recognition and voice command functionality to their smart home devices and other products.

    (Image source: Fluent.ai / CES

  • Intel Tiger Lake Chip

    When Intel announces a new chip, the whole world takes notice. The chipmaking giant is launching its latest chip for consumers this year. Dubbed Tiger Lake, the new chip is said to be optimized for AI performance, graphics, and USB 3 throughput. Rather than desktops, the new chips will be focused on mobile devices such as ultra-thin laptops and tablets. The first products featuring Tiger Lake are expected to ship later in 2020.

    (Image source: Intel)

  • Monster MultiLink Bluetooth Technology

    Sometimes its the most straightforward ideas that can make the biggest difference. Most of us love our Bluetooth wireless headphones and earbuds. The problem is they don’t create a sharable experience. What if you want to show your friend the video you’re watching without disturbing the people around you? Monster has debuted a new technology called Music Share that uses MultiLink technology to allow devices to send Bluetooth audio to multiple devices in sync. The technology expands how Bluetooth headphones can be used and opens up new use cases ranging from air travel to fitness classes as well as new avenues for social interaction.

    (Image source: Bluetooth SIG)

  • Murata Coral Accelerator Module

    Working in partnership with Coral and Google, Murata Electronics has developed what it is calling the world’s smallest AI module. The Coral Accelerator Module packages Google’s Edge TPU ASIC into a miniaturized footprint to enable developers to embed edge-based AI into their products and devices. The new module forms an integral part of Coral’s integrated AI platform, which also includes a toolkit of software tools and pre-compiled AI models.

    (Image source: Murata Electronics Americas)

  • Pollen Robotics Reachy Open-Source Robot

    Reachy is a robot developed by Pollen Robotics, in collaboration with the INCIA Neuroscience Institute in France, that is fully open source. The robot, which can be programmed using Python, is modular – employing a variety of 3D-printed grippers – and comes with prepackaged AI algorithms to allow developers to customize it for a variety of applications ranging from customer service and assisting the elderly or disabled.

    Read more about Reachy, and the rise of open-source robotics, here.

    (Image source: Pollen Robotics)

  • VRgineers 8K XTAL Headset

    VRgineers, a maker of premium VR headsets for enterprise applications in industries ranging from automotive to defense and military, has released a major upgrade to its flagship XTAL headset. The latest version of XTAL features 8K resolution (4K per eye), improved lenses with a 180-degree field-of-view, and a new add-on module for augmented reality and mixed reality functionality. The headset also still includes eye tracking as well as integrated Leap Motion sensors to enable controller-free navigation and interactions.

    (Image source: VRgineers)

  • zGlue ChipBuilder

    zGlue is a software company that develops tools for chipmakers and designers. Its latest offering, ChipBuilder 3.0 is a design tool to for building custom silicon chips and accelerating time to market. The software suite features an expansive library of chipsets and allows engineers to capture schematics, route and verify designs, and download netlists. The tool allows engineers to create realistic 3D models and code their own chips and even place orders for physical chips via zGlue’s Shuttle Program.

    (Image source: zGlue / CES)

Chris Wiltz is a Senior Editor at   Design News  covering emerging technologies including AI, VR/AR, blockchain, and robotics

we-are-one-step-closer-to-3d-printing-donor-organs-in-outer-space

You might call it a giant leap for 3D bioprinting: Human heart cells have been 3D printed on the International Space Station (ISS) and are making their way back to Earth this week inside a SpaceX capsule. The 3D BioFabrication Facility (BFF) was developed by Techshot Inc., a commercial operator of microgravity research and manufacturing equipment, in partnership with nScrypt, a manufacturer of industrial 3D bioprinters and electronics printers.

“Our BFF has the potential to transform human healthcare in ways not previously possible,” said Techshot President and CEO John Vellinger. ”We’re laying the foundation for an entire industry in space.”

3D BioFabrication Facility
The 3D BioFabrication Facility is the first U.S. 3D printer capable of manufacturing human tissue under microgravity conditions, according to Techshot Inc.

If you’re wondering why they don’t just print the cells here on Earth, the answer is gravity. When attempting to print with soft, easily flowing biomaterials on Earth, the tissues collapse under their own weight, resulting in little more than a puddle, explained Techshot in a press release. “But when these same materials are used in the microgravity environment of space, the 3D-printed structures maintain their shapes.” The bio-ink used in the space station, consequently, did not contain the scaffolding materials or thickening agents normally required to resist the Earth’s gravitational pull.

The test prints made in space are large by terrestrial bioprinting standards, measuring 30 mm long by 20 mm wide by 12.6 mm high. The BFF printed inside a Techshot-developed cell-culturing cassette that strengthens the assemblage of cells over time. The tissue-like structure is expected to be viable and self-supporting once it is back in Earth’s gravity.

More 3D bioprinting in space will take place in March following the delivery of additional bio-inks to the ISS National Laboratory aboard SpaceX mission CRS-20.

Following that round of test prints, Techshot expects to declare BFF open for business to industrial and institutional life science customers. Including the bioprinter, Techshot owns and operates five commercial research and manufacturing payloads aboard the ISS, reportedly the largest catalog of any American company operating inside the orbiting lab. A sixth payload, the Techshot Cell Factory, is under development. It will enable the company’s customers to continuously generate multiple cell types in space and not rely entirely on cargo resupply spacecraft transporting the cells.

Although the prospect of manufacturing human hearts and other organs via a 3D bioprinter in space is at least a decade away, Techshot is hopeful that the long-term success of the BFF could lead to a reduction in the shortage of donor organs.

Founded more than 30 years ago, Techshot operates its own commercial research payloads in space and serves as the manager of three NASA-owned ISS payloads. Test experiments, such as the one described in this article, aside, the company rarely conducts its own research. Its business model entails providing equipment on board the station for a fee to those with their own independent research programs, serving as a one-stop resource for organizations that want access to space.

Headquartered in Greenville, IN, and with an office at the Kennedy Space Center in Florida, Techshot is an official Implementation Partner for the ISS U.S. National Laboratory. It has agreements with NASA that provide the company and its customers with access to space cargo transfer services and assistance from the on-orbit crew.

patient-specific-3d-printed-airway-stents-cleared-by-fda

The Cleveland Clinic reported yesterday that FDA has cleared patient-specific 3D-printed airway stents developed by one of its physicians, Tom Gildea, MD.

The stents are used to keep open the airways of patients with serious breathing disorders, such as those caused by tumors, inflammation, trauma or other masses. Until now, the patient-specific devices were being implanted under FDA’s compassionate use program, which allows patients who have failed all available forms of treatment to receive investigational ones not yet available to the public, said the Cleveland Clinic in a news release.

Standard airway stents come in a limited number of sizes and shapes and are generally designed for larger airways. However, no two patient anatomies are alike, making it difficult to get a perfect fit, especially for those with complex conditions. Ill-fitting standard stents can result in stent kinking and bending as well as airway complications such as growth of new tissue, mucus impaction and tissue death.

The patient-specific stents developed by Gildea and his engineering team are designed using CT scans and proprietary 3D visualization software. The molds for the stents are then printed using a 3D printer and injected with medical-grade silicone. This process allows them to perfectly fit a patient’s anatomy.

By using CT scans, visualization software and a 3D printer, Cleveland Clinic physician Tom Gildea is able to produce airway stents that precisely fit patient anatomies. This image courtesy Cleveland Clinic shows implantation of the stent.


“Breathing is something many people take for granted, but for many of these patients, every breath can be a struggle. It’s been gratifying to see patients receiving the customized stents feeling relief right away,” said Gildea, section head of bronchoscopy at Cleveland Clinic. “We are excited to be able to bring this technology to more patients across the country and grateful for the patients and donors who have worked with us to help pioneer this technology.”

Unlike standard stents, which may require frequent changes and cleaning because of a poor fit, patient-specific silicone stents lasted, on average, about a year in studies conducted at the Cleveland Clinic. Furthermore, the patient-specific stents exhibited shorter procedure times and improved patient-reported symptoms, leading to a reduced need for stent changes and modifications.

Approximately 30,000 airway stents will be implanted in the United States in 2020, according to the Cleveland Clinic.

Patient-specific products manufactured with 3D printing, including the airway stents, were named as one of the top 10 innovations at Cleveland Clinic’s annual Medical Innovations Summit in 2018. Gildea received the Outstanding Innovation in Medical Device award at the 2018 Inventor Awards Reception held by Cleveland Clinic Innovations.

A new subsidiary named VisionAir Solutions will be formed around the technology with the sole mission of bringing more personalized medical devices to interventional pulmonologists. By the end of the first quarter of 2020, this new spin-off company plans to begin providing the personalized stents to patients in a controlled launch at many of the country’s top medical institutions.

digital-microscopes-and-imaging-reveal-all

If you’ve ever attended any optical or photonic conferences, you’ve likely seen demos of digital microscopes by Dino-Lite, a brand name for Omano Microscopes and others companies like Andonstar Microscopes, National Optical, OptixCam, and more.

Unlike traditional classroom or laboratory optical microscopes, digital versions replace the eyepiece with a digital camera that feed into a monitor. Thanks to advances in computer display resolution, digital microscopes can produce amazing visuals for everything from cells and micro-organisms to the details of integrated circuits and PCBs (see videos).

By digitizing optical images, users can calculate measurements in software, share results around the globe and often conduct real-time tests and diagnostics. Such advantages might be the reason that digital microscopes are used in multiple market sectors including academics, manufacturing, quality control, semiconductors, healthcare, and electronics.

Digital microscopes are great for displaying tiny objects like ants, gears and chips to even bacteria on a microscopic slide. However, the specimen on the slide must still be fixed and stained to be seen by a digital microscope. If a user needs to witness cellular structures and interactions in real time, then a new technology known as digital holographic microscopy is needed.

Digital holographic microscope, such as those from the Imec R&D center in Belgium, replace the traditional optical lens with a lens-free image sensor. Holographic image reconstruction algorithms then convert the image sensor data into a visual image of amazing interactive detail.

Check out the videos below to see live demonstrations of digital microscopes from the SPIE Photonics West events.

John Blyler is a Design News senior editor, covering the electronics and advanced manufacturing spaces. With a BS in Engineering Physics and an MS in Electrical Engineering, he has years of hardware-software-network systems experience as an editor and engineer within the advanced manufacturing, IoT and semiconductor industries. John has co-authored books related to system engineering and electronics for IEEE, Wiley, and Elsevier.

human-augmentation-makes-list-of-2020-strategic-techs

Ever the adaptive species, human beings have long used technology to augment their natural capabilities. Even pre-historic cave dwellers used obsidian rocks to sharpen sticks into fine points, effectively extending their arms and thus the targets they could hit.

Today, humans use electronic and mechanical technology to physically augment their bodies. This is done attaching or implanting some type of device to improve their capability to go beyond the current human experience, e.g., 3D-printing an appendage or interfacing directly with the digital world through a brain-computer interface (BCI). The former is an example of how technology can enhance a person’s physical capabilities while the latter is related to cognitive improvements.

Like our cave dwelling ancestors, many of today’s augmentations offer fairly simple improvements. Consider the example of an extra thumb. That’s exactly what Dani Clode, a grad student at London’s Royal College of Art (RCA), has done with her third thumb project. This augmentation is a 3D-printed prosthetic that simply extends a user’s grip. The extra thumb straps onto the hand, which connects to a bracelet containing wires and servos. The wearer controls the thumb via pressure sensors located under the soles of their feet. Pressing down with one foot will sent a signal via a Bluetooth device that will cause the thumb to grasp.

Be it simple or complex, human augmentation has made the list of Gartner Top 10 Strategic Technology Trends for 2020. The report cites several growing market areas were implanted or hosted physical augmentations improve both workers health and the company’s financial bottom lines.  For example, the automotive or mining industries use wearables to improve worker safety. In other industries, such as retail and travel, wearables are used primarily to increase worker productivity. 

The report lists four main categories of physical augmentation: Sensory augmentation (hearing, vision, and perception), appendage and biological function augmentation (exoskeletons, prosthetics), brain augmentation (implants to treat seizures) and genetic augmentation (somatic gene and cell therapy). Each of these categories are worthy of a separate discussion. For now, the timeline below will focus on one portion of the second category, namely, prosthetics.

Modern human augmentation sometimes called “Human 2.0,” would not be possible with the advances offer by semiconductor electronics (e.g., processors, memory, sensors and wireless tech) and the related advancement in robotics. Thus, our brief timeline starts with the advent of the transistor.  

the-top-consumer-electronic-articles-of-2019

According to Statista, the consumer electronics industry is expected to grow by around 2.2 percent between 2018 and 2019. While this rate is significantly less than in previous years, it still shows a strong upward trend. 

Design News covered all of the leading growth areas in both consumer electronics and product manufacturing trends. Below are 12 of the editor’s top picks for 2019.

Image: Vectorfusionart/Adobe Stock

Which companies were naughty—and which were nice—in 2019?

It’s time to draft the naughty and nice lists for 2019 and see which companies deserve to be rewarded and which ones will get a lump of coal in their stocking.

printed circuits, Linköping University, RISE, Research Institutes of Sweden, Campus Norrköping, organic transistors

Image source: Thor Balkhed

Complete integrated circuits fabricated using printing press

The breakthrough eliminates the need to use multiple manufacturing methods to create an integrated circuit with more than 100 organic transistors.

Image Source: Adam Traidman, Turkey

What does every engineer want for the holidays?

Skip the presents and go for the (engineering) experience.

During the holiday season, one tends to think of presents. But today’s designers, manufacturers and sellers tell us the product is but a commodity and what we really want is the experience.

10 Technologies That Can Make You Into a Superhero

There are technologies that exist today that aren’t far off from what you’ve seen in superhero movies and comic books.

digital twin, Altair, physics-based testing, simulation testing, crash test dummies

Image source: Altair

Save Your Crash Test Dummy

The blend of physics-based testing and data-based simulation has an impressive impact on the ability to shorten the time-to-market of new designs. Add simulation, but don’t throw away the dummy.

Image Source: Netflix

8 Popular Products You Didn’t Know Were Built with Open Source

A popular streaming service, video games consoles, and mobile messaging all owe a debt to FreeBSD.

Image Source: Cisco

The 7 Best LoRaWAN Devices on the Market

Whether you’re building a DIY project, or attempting to manufacture something for market, there are ready-made LoRaWAN gateway products to support your efforts.

New Material Could Transform How Electronics Are Built

A new family of crystal materials can serve a dual purpose in electron movement in electronic devices, potentially changing how they will be designed in the future.

Image source: Clarke Lab/Harvard John A. Paulson School of Engineering and Applied Sciences

Method for Soft Actuation Eyed for New Devices, Robots

A new method for actuation can change the shape of a flat sheet of elastomer with rapid and reversible action for new designs in robotics and other applications.

Image source: NürnbergMesse

3 Trends from Embedded World 2019

Embedded World revealed a number of trends that we can expect to see in the mass markets over the next six months to two years.

e-bandage

Image source: UW/Sam Million-Weaver

Electronic Bandage Can Speed Wound Healing 

An e-bandage dramatically speeds wound-healing using electrical energy harvested from a patient’s body.

smart textile

(Image source: The Laboratory of Monica Craciun, University of Exeter)

Graphene-Based Electronic Fibers for Wearable Textiles

Graphene could be used to incorporate electronics directly into fabric for next-generation smart textiles.

John Blyler is a Design News senior editor, covering the electronics and advanced manufacturing spaces. With a BS in Engineering Physics and an MS in Electrical Engineering, he has years of hardware-software-network systems experience as an editor and engineer within the advanced manufacturing, IoT and semiconductor industries. John has co-authored books related to system engineering and electronics for IEEE, Wiley, and Elsevier.