are-plastic-recycling-programs-rubbish?

Once an admirable goal for plastic packaging and single-use plastic products, recycling of late has been called “garbage” (New York Times Magazine), “greenwashing” (Greenbiz) and “The Great Recycling Con” (New York Times). In the latter article, authors Tala Schlossebers and Nayeema Raza call recycling “propaganda” because the industry “wants to trick us into thinking we can use as much plastic as we want so long as we recycle.”

Gee, Tala and Nayeema, tell us how you really feel about recycling!

landfill

Recycling seems to have hit a brick wall primarily because of problems associated with the incompatibility of various plastics. “Current plastic recycling and sustainability goals are limited by the intrinsic incompatibility of many polymers and the negative effect of fillers and impurities on end-product properties, thus requiring a high degree of expensive sorting, separating and cleaning,” Sal Monte, President of Kenrich Petrochemicals Inc. (Bayonne, NJ), told PlasticsToday. Another barrier is that the melt processing of polymers causes “chain scissoring,” resulting in recycle and regrind materials having inferior properties compared with virgin resins.

That is why sorting—a labor-intensive activity that results in a lot of waste—is necessary. Monte noted that the reason for separating #1 (PET) and #2 (HDPE) from #5 and #7 is because of the incompatibility between the materials, “unless you use titanium/aluminum additives that perform in situ catalysis of polymers and coupling of fillers,” he said. Using innovative additive technology that permits co-mingling of plastic materials into a single waste stream and deriving value from these materials to produce new products is the Holy Grail of recycling.

Monte said that current compatibilizers offered to recyclers are based on co-polymers or maleic anhydride (MAH) modified polymers. “Co-polymer compatibilizers require extensive sorting to match up the polarities of the recycled materials, and maleic anhydride often depolymerizes condensation polymers such as PET and nylon, obviating their use in post-consumer recycle,” explained Monte. “MAH technology claims to be a coupling agent, which is true for rebuilding polymer molecular weight, but it’s a misnomer when applied to coupling filler and organic interfaces.”

But the real problem is money, noted Monte. For recyclers, it’s unlikely that they will spend a penny more on additives to compatabilize co-mingled polymers. He said that sustainability goals such as a circular economy using curbside recyclate in new plastic parts are not achievable economically absent subsidization and legislation because of:

  • Shale oil—virgin is cheaper;
  • China’s National Sword—no market;
  • quality—Industry 4.0/automation;
  • product liability litigation—specs must be met;
  • additives are expensive—recyclers will not add a penny to their material costs unless extensive and expensive on-site experimentation is allowed to demonstrate economic and technical efficacy;
  • curbside recyclers are not polymer chemists—it’s complicated.

Monte agrees with what I’ve written several times in my previous blogs. “Bulk recycling has pretty much been a confusing mess since it started,” he said.

Image: Aryfahmed/Adobe Stock

france-charts-course-for-zero-waste-society

There is a French revolution nouveau taking place—a revolt against single-use plastics (SUPs). In case you haven’t heard, the French government wants to eliminate all disposable plastic packaging by 2040.

You may have read about France’s decision to end the use of straws, glasses, cutlery, plates, drink stirrers, take-out cups and lids as well as food boxes made of EPS that will take effect in January. France wants to take that a step further, by going from a “disposable” society to a “reusable” one in the country’s drive for Zero Waste 2040 by banning all plastic packaging.

Single-use plastic cutlery

All products that were formerly “disposable” must be “reusable.” That means that even fast food restaurants must provide cutlery, plates, cups and lids that can be washed/sterilized and reused, which pretty much ends the take-out business many of these restaurants currently provide. The energy and water used to ensure the sanitary conditions of these utensils and plates will be enormous. But France has plenty of energy from its nuclear power plants, so energy—and, obviously, potable water—is not a problem.

According to a report by Axel Barrett in Bioplastics News, the bill that will ban all plastic packaging also prohibits the “free distribution of plastic bottles in public and business places. All will have to be equipped with water fountains.” Plans call for the deployment of “bulk devices by 2021, forcing sellers to accept containers brought by the consumer.” Manufacturers who use any type of plastic overwrap will run the risk of a “financial penalty.”

An article in the online media publication Euractiv noted that the “timetable for getting rid of disposable plastics adopted by the majority of [Members of Parliament] has caused an outcry, given that it seems disconnected from what the European Parliament recently declared to be an ‘environmental emergency.’” Euractiv noted that last March, the EU Parliament adopted a “less extensive ban of plates, cutlery, cotton buds and straws” scheduled for 2021.

The World Wildlife Fund (WWF) of France complained: “We cannot wait until 2040 to ban disposable bags, small bottles or plastics in public and at events,” said Euractiv, noting that WWF France “is asking the government to take concrete and immediate action.”

I suppose the French aren’t as concerned about food safety as they are about getting rid of plastic. In many cases, a plastic overwrap is used to protect the product from tampering by some nefarious persons with the intent to do harm to the general public. It also can add to the shelf-life of a product by serving as an added barrier from oxygen that can result in spoilage. That also goes for barrier packaging that employs layers of plastic—forget that! Banned! Food waste will soon be a big problem in France.

And if you think that “bioplastics” and “compostable” packaging products are exempt, think again. As Barrett reported, the French parliament also adopted a new amendment that says if the “packaging is not ‘home compostable’ it cannot be labeled ‘compostable.’” As Barrett noted in his editorial, “This will force bioplastics companies to aim for home compostability instead of just industrial compostability.”

However, we must remind Barrett that “bioplastic” isn’t necessarily “compostable.” Not all compostable materials—plastics and paperboard—can actually be composted in a commercial/industrial composting facility, much less a backyard composting bin. How many Parisians, for example, have a composting bin? Will the French parliament mandate that all households have a composting bin that can actually compost plastics and paperboard? Will the urban French have to install under-the-sink composting bins?

Backyard composting is work! The environment must be kept at a temperature that is conducive to creating compost. The layers of dirt and food waste must be turned every few days. Even large industrial composting facilities have found that compostable or biodegradable plastics and some heavier paperboard containers will not break down enough in six months for the compost to be sold to consumers.

Let’s face it, “biodegradable” and “compostable” are terms used by companies to “greenwash” their products. Barrett believes that this new mandate by the French parliament “may enable a true bioplastics packaging revolution.”

Or maybe not.

The French Parliament recently had an enlightening experience. The alternative for take-out packaging—food containers and cups—is paper or paperboard. However, the plastics lobby educated Members of Parliament on the fact that paper and paperboard cups and take-out food containers are not “waterproof” without a protective layer of—wait for it—plastic! That makes these paper and paperboard items non-recyclable, non-biodegradable and non-compostable!

Plastic cups and lids, plates and take-out containers are recyclable. “Many stakeholders of the plastic industry were afraid that the paper and cardboard industry would benefit from the plastic bashing in the sense that it would be perceived as a sustainable alternative,” Barrett wrote in his editorial. “The plastic lobby was more efficient than the cardboard and paper lobby. The end of paper and cardboard cups in Europe is coming.”

here's-what's-on-the-plastics-industry's-wish-list-for-2020

It was one hell of a [insert your adjective] year, but one thing you can’t say is that it was boring. That was true of the movies—The Irishman! Ford v Ferrari! Once Upon a Time in Hollywood! Parasite!—music—Billie Eilish! Lizzo! Billie Eilish!—and, last but not least, politics—Trump! Brexit! Impeachment!

It was a year to remember for the plastics industry, as well, 2019 being a K year, after all. We had a great time at the show, discovering new products, identifying trends and catching up with folks in the industry from around the world.

year change to 2020

But 2019 is winding down and our attention turns to the year ahead, which gave us the idea of asking people associated with the plastics industry what was on their wish list for 2020. Here’s what they told us.

A special thanks to all of the folks who shared their 2020 wish lists with PlasticsToday, and now we invite you, dear readers, to share your wishes for the new year in the comments section below. And allow me to take this opportunity to wish each and every one of you a happy new year. Let’s hope it’s a good one, without any fear, as someone once sang.

Circularity of the economy is a must for the future

Mark Costa, Eastman“As a materials innovation company, Eastman is working toward creating infinite value from our finite resources as we strive to improve the quality of life globally in a material way. We believe circularity of the economy is a must for the future and that chemical recycling is a critical tool for making that happen. In this arena, our greatest wish for 2020 is that chemical recycling becomes accepted as a legitimate recycling option, facilitated by a mass balance credit approach. As a subset of that, we want to see policies and infrastructure created to drive the collection, aggregation and distribution of plastic waste to companies like ours that can use it right now as a feedstock to create new, circular materials.”

—Mark Costa, Board Chair and CEO, Eastman


We will drive digitalization even further

Stefan Engleder, ENGEL“Digitalization is paving the way for solving some of the toughest challenges of our time. One important field are the emerging initiatives regarding the circular economy. Only by connecting companies along the value chain, will we be capable of implementing a sustainable recycling network. Digitalization is the enabler of a modern, healthy and eco-friendly life. For 2020, I wish that together, with our customers, we will drive digitalization even further.”

—Dr. Stefan Engleder, CEO, Engel Holding

Plastics is strong

David Preusse, Wittmann Battenfeld USA“Plastic bans continue and may be gaining some momentum, but I can’t state the actual effects since much of it is based on emotion and there are hardly any better materials to replace plastics. We see more advances in plastics applications in the medical field that continue to save lives and push life expectancy. It’s too bad the public isn’t learning how plastics are saving lives and contributing to our sustainability. As governments add more bans and brand owners demand recycling, while China isn’t taking our trash, we might start to see the real change that I believe is possible. Landfills are not the answer.

“The U.S. division of Wittmann Battenfeld had a super year. After 12 years of a wonderful economic climb, I don’t expect 2020 growth necessarily, but if we actually do see growth, I will be very pleased.

“If we don’t follow the negative news media, we are still so fortunate here in the United States. Plastics is strong, and we all should be proud. If a partial slow down comes, just maybe we slow the issue we face in not having enough of a technical trained workforce and slow the challenges in such a low unemployment situation (technical unemployment is below 2%!).”

—David Preusse, President, Wittmann Battenfeld USA

Main image: Phunrawin/Adobe Stock

2019's-10-best-books-for-engineers-and-technologists

Engineers will find something of interest in these selections, from Heaviside and Silicon Valley, to sustainable manufacturing, organs-on-a-chip, and more.

  • Don’t know what to get the engineer in your life? Here’s a mix of easily understood, yet engaging, books combined with a few hardcore technical works. All of these books were published in 2019, except for two that still remain worthy of note today.

  • The Forgotten Genius of Oliver Heaviside: A Maverick of Electrical Science

    By: Basil Mahon

    Publisher: Prometheus

    With the release of the film The Current War, it’s easy to forget the contributions of Oliver Heaviside. While The “current war” focused on the competition between Edison, Westinghouse, and Tesla to bring electricity to all of America, Heaviside (a contemporary of Edison and Westinghouse) was focused on electrical engineering technology to help bring mass communication to the country.

    Heaviside gave us the unit step function (remember calculus class?), coaxial cable, and the small coils placed in series with every telephone line to improve the signal by providing inductive loading.

    From the publisher:

    “This biography of Oliver Heaviside profiles the life of an underappreciated genius and describes his many contributions to electrical science, which proved to be essential to the future of mass communications. Oliver Heaviside (1850 -1925) may not be a household name, but he was one of the great pioneers of electrical science: His work led to huge advances in communications and became the bedrock of the subject of electrical engineering as it is taught and practiced today. His achievements include creating the mathematical tools that were to prove essential to the proper understanding and use of electricity, finding a way to rid telephone lines of the distortion that had stifled progress, and showing that electrical power doesn’t flow in a wire but in the space alongside it.

    At first his ideas were thought to be weird, even outrageous, and he had to battle long and hard to get them accepted. Yet by the end of his life he was awarded the first Faraday Medal. This story will restore long-overdue recognition to a scientist whose achievements in many ways were as crucial to our modern age as those of Edison’s and Tesla’s.”

  • Make, Think, Imagine: Engineering the Future of Civilization

    By: John Browne

    Publisher: Pegasus Books

    From the publisher:

    “Today’s unprecedented pace of change leaves many people wondering what new technologies are doing to our lives. Has social media robbed us of our privacy and fed us with false information? Are the decisions about our health, security and finances made by computer programs inexplicable and biased? Will these algorithms become so complex that we can no longer control them? Are robots going to take our jobs? Will better health care lead to an aging population which cannot be cared for? Can we provide housing for our ever-growing urban populations? And has our demand for energy driven the Earth’s climate to the edge of catastrophe? John Browne argues that we need not and must not put the brakes on technological advance. Civilization is founded on engineering innovation; all progress stems from the human urge to make things and to shape the world around us, resulting in greater freedom, health and wealth for all. Drawing on history, his own experiences and conversations with many of today’s great innovators, he uncovers the basis for all progress and its consequences, both good and bad. He argues compellingly that the same spark that triggers each innovation can be used to counter its negative consequences. This book provides an blueprint for how we can keep moving towards a brighter future.”

  • The Code: Silicon Valley and the Remaking of America

    By: Margaret O’Mara

    Publisher: Penguin

    Margaret O’Mara worked in the White House of Bill Clinton and Al Gore in the earliest days of the commercial Internet. There she saw firsthand how deeply intertwined Silicon Valley was with the federal government–and always had been–and how shallow the common understanding of the secrets of the Valley’s success actually was.

    In this work, she tells the story of mavericks and visionaries, but also of powerful institutions creating the framework for innovation, from the Pentagon to Stanford University. It is also a story of a community that started off remarkably homogeneous and tight-knit and stayed that way, and whose belief in its own mythology has deepened into a collective hubris that has led to astonishing triumphs as well as devastating second-order effects.

  • The Design of Coffee: An Engineering Approach

    By: William Ristenpart, Tonya Kuhl

    Publisher: CreateSpace Independent Publishing Platform

    Here’s another work that was published a few years ago but is relevant this year for its emphasis on cross-discipline collaboration, a trend noted in the chemistry industry.

    From the publisher:

    “[This book] provides a non-mathematical introduction to chemical engineering, as illustrated by the roasting and brewing of coffee. Hands-on coffee experiments demonstrate key engineering principles, including material balances, chemical kinetics, mass transfer, fluid mechanics, conservation of energy, and colloidal phenomena. The experiments lead to an engineering design competition where contestants strive to make the best tasting coffee using the least amount of energy – a classic engineering optimization problem, but one that is both fun and tasty! 

    Anybody with access to a sink, electricity, and inexpensive coffee roasting and brewing equipment can do these experiments, either as part of a class or with your friends at home. The Design of Coffee will help you understand how to think like an engineer – and how to make excellent coffee!”

  • Human Compatible: AI and the Problem of Control

    By: Stuart Russell, Allen Lane

    Publisher: Viking

    From the publisher:

    “Creating superior intelligence would be the biggest event in human history. Unfortunately, according to the world’s pre-eminent AI expert, it could also be the last. In this book on the biggest question facing humanity, the author explains why he has come to consider his own discipline an existential threat to his own species, and lays out how we can change course before it’s too late. There is no one better placed to assess the promise and perils of the dominant technology of the future than Russell, who has spent decades at the forefront of AI research. Through brilliant analogies prose, he explains how AI actually works, how it has an enormous capacity to improve our lives – but why we must ensure that we never lose control of machines more powerful than we are. Here Russell shows how we can avert the worst threats by reshaping the foundations of AI to guarantee that machines pursue our objectives, not theirs.”

  • Organ-on-a-Chip: Engineered Microenvironments for Safety and Efficacy Testing

    By: Julia Hoeng (Editor), David Bovard (Editor), Manuel Peitsch (Editor)

    Publisher: Academic Press/Elsevier

    From the publisher:

    “[This book] contains chapters from world-leading researchers in the field of organ on a chip development and applications, with perspectives from life sciences, medicine, physiology and engineering. The book details the field, with sections covering the major organ systems and currently available technologies, platforms and methods. As readers may also be interested in creating biochips, materials and engineering best practice, these topics are also described. Users will learn about the limitations of 2D in-vitro models and the available 3D in-vitro models (what benefits they offer and some examples). Finally, the MOC section shows how the organ on a chip technology can be adapted to improve the physiology of in-vitro models.”

  • Sustainable Engineering Products and Manufacturing Technologies

    By: Kaushik Kumar (Editor), Divya Zindani (Editor), J. Paulo Davim (Editor)

    Publisher: Academic Press/Elsevier

    From the publisher:

    “[This book] provides the reader with a detailed look at the latest research into technologies that reduce the environmental impacts of manufacturing. All points where engineering decisions can influence the environmental sustainability of a product are examined, including the sourcing of non-toxic, sustainable raw materials, how to choose manufacturing processes that use energy responsibly and minimize waste, and how to design products to maximize reusability and recyclability. The subject of environmental regulation is also addressed, with references to both the US and EU and the future direction of legislation.”

    Finally, sustainability factors are investigated alongside other product considerations, such as quality, price, manufacturability and functionality, to help readers design processes and products that are economically viable and environmentally friendly.”

  • Introductory Electrical Engineering With Math Explained in Accessible Language

    By: Magno Urbano

    Publisher: Wiley

    From the publisher:

    “[This work] offers a text that explores the basic concepts and principles of electrical engineering. The author explains the underlying mathematics involved in electrical engineering through the use of examples that help with an understanding of the theory. The text contains clear explanations of the mathematical theory that is needed to understand every topic presented, which will aid students in engineering courses who may lack the necessary basic math knowledge.”

    “Designed to breakdown complex math concepts into understandable terms, the book incorporates several math tricks and knowledge such as matrices determinant and multiplication. The author also explains how certain mathematical formulas are derived. In addition, the text includes tables of integrals and other tables to help, for example, find resistors’ and capacitors’ values. The author provides the accessible language, examples, and images that make the topic accessible and understandable.”

  • What Is Data Engineering?

    By: Lewis Gavin

    Publisher: O’Reilly Media, Inc.

    From the publisher:

    “The demand for data scientists is well-known, but when it comes time to build solutions based on data, your company also needs data engineers—people with strong data warehousing and programming backgrounds. In fact, whether you’re powering self-driving cars or creating music playlists, this field has emerged as one of the most important in modern business. In this report, Lewis Gavin explores key aspects of data engineering and presents a case study from Spotify that demonstrates the tremendous value of this role.”

  • Lithium-Ion Battery Failures in Consumer Electronics

    By: Ashish Arora, Sneha Arun Lele, Noshirwan Medora, Shukri Souri 

    Publisher: Artech House

    From the publisher:

    “This comprehensive resource caters to system designers that are looking to incorporate lithium ion (li-ion) batteries in their applications. Detailed discussion of the various system considerations that must be addressed at the design stage to reduce the risk of failures in the field is presented. The book includes technical details of all state-of-the-art Li-on energy storage subsystems and their requirements and provides a system designer a single resource detailing all of the common issues navigated when using Li-ion batteries to reduce the risk of field failures.

    “The book details the various industry standards that are applicable to the subsystems of Li-ion energy storage systems and how the requirements of these standards may impact the design of their system. Checklists are included to help readers evaluate their own battery system designs and identify gaps in the designs that increase the risk of field failures. The book is packed with numerous examples of issues that have caused field failures and how a proper design/assembly process could have reduced the risk of these failures.”

John Blyler is a Design News senior editor, covering the electronics and advanced manufacturing spaces. With a BS in Engineering Physics and an MS in Electrical Engineering, he has years of hardware-software-network systems experience as an editor and engineer within the advanced manufacturing, IoT and semiconductor industries. John has co-authored books related to system engineering and electronics for IEEE, Wiley, and Elsevier.

10-semi-electronic-device-tech-reveals-from-ieee-iedm-2019

2019 IEEE IEDM event reveals latest node chips, chiplets, memories for AI, densest thin-film batteries, 400Gbits/s silicon photonics, quantum computing tools and much more.

  • The theme for this year’s 65th IEEE International Electron Devices Meeting (IEDM) was, “Innovative Devices for an Era of Connected Intelligence.” As in previous years, major semiconductor players including and international research organizations (e.g., imec, CEA-Leti, UC universities and others) presented the latest detailed technology for processors, memories, interfaces and power device devices. Additionally, the event included quantum computing advances, medical uses and other newer areas of application.

    Here are 10 of the major semiconductor “reveals” at the show for 2019.

  • Leading Edge 5nm Chip with Super Dense Memory

    Moore’s Law may be hitting the wall but it’s not dead yet. TSMC unveiled a complete 5nm technology platform that advanced silicon chip scaling (miniaturization) to the next process node. Reaching the 5nm node milestone was due in part to advances in lithography and improvements in process and packaging techniques.

    TSMC researchers described a 5nm CMOS process optimized for both mobile and high-performance computing. It offered nearly twice the logic density and a 15% speed gain or 30% power reduction over the company’s 7nm process. The process optimization incorporated extensive use of EUV lithography to replace immersion lithography at key points in the manufacturing process.

    TSMC’s 5nm platform also featured FinFETs and high-density SRAM cells. The SRAM could be optimized for low-power or high-performance applications, and the researchers say the high-density version was the highest-density SRAM ever reported. The researchers say high-volume production was targeted for 1H20.

  • Quantum computing 

    Great strides have been made in quantum computing. At the Semicon West/Electronic System Design (ESD) 2019 conference, IBM displayed it’s  IBM Q Experience, a cloud-based quantum computer available for free to anyone with a web browser and an internet connection.

    Creating a quantum computer has been an amazing technological achievement, but like any computer it needs software. Imec – the international Flemish R&D nanoelectronics organization – presented the first step toward developing a systematic approach to the design of quantum computing devices.

    EDA chip design software such as TCAD is necessary to produce highly accurate models of semiconductor devices and their operation. To date, no analogous tools exist to model qubits, the basis of quantum computing, because the field is so new and complex. If these design tools did exist, the development of quantum computers could take place much more quickly.

    The Imec team has taken a step to create such a software framework using multiphysics simulation methods to develop a comprehensive design methodology for qubits built in silicon. They modeled device electrostatics, stress, micro-magnetics, band structure and spin dynamics. Based on the results of these studies, they say that single-electron qubits in quantum dots can be induced and optimized in silicon MOSFETs with thin (<20nm) gate oxides. The researchers will discuss critical aspects of their methodology, the parameters they modeled, and next steps.

  • 3D Chiplets

    Intel presented a novel 3D heterogeneous integration process for chiplet creation. It is seen as an evolution of Moore’s Law, a way to keep the scaling, size and cost benefits continuing into the foreseeable future.

    Chiplets are a type of advanced packaging which offers a different way to integrate multiple dies into a package or system. There are a number of ways to make chiplets, but all use a library of modular chips – like Lego building blocks. These module chips are assembled in a package that connects them using a die-to-die interconnect scheme.

    There are many other approaches to combining chip dies, i.e., 2.5D dies that are stacked on top of an interposer. But the hope with a chiplet approach is that it’s a faster and less expensive way to assemble various types of third-party chips like processors, memory, interfaces and the like.

    Here are the details: Intel believes that heterogeneous 3D integration will drive scaling. CMOS technology requires both NMOS and PMOS devices. Intel researchers used 3D sequential stacking architecture to combine these different devices. They first built Si FinFET NMOS transistors on a silicon wafer. On a separate Si wafer they fabricated a single-crystalline Ge film for use as a buffer layer. They flipped the second wafer, bonded it to the first, annealed them both to produce a void-free interface, cleaved the second wafer away except for the Ge layer, and then built gate-all-around (GAA) Ge-channel PMOS devices on top of it. The researchers say these results show that heterogeneous 3D integration is promising for CMOS logic in highly scaled technology nodes.

    This images hows a schematic and a cross-section of a fully processed 3D CMOS transistor structure achieved by this process; in the middle is a thickness contour map of the Ge transfer layer, showing good uniformity; and at right is a 3D cross-sectional view of the completed 3D CMOS chip showing Ge-channel GAA transistors on top of Si FinFET NMOS transistors.

  • AI That Does’t Forget

    Embedded STT-MRAM and other non-volatile memories (NVMs) are getting a lot of attention lately. NVMs devices retain their memory even after the power is removed. Embedded SST-NRAM is one NVM that shows particular promise in the embedded memory space for cache memory in IoT and AI applications.

    At IEDM 2019, TSMC described a versatile 22nm STT-MRAM technology for AI while Intel talked about STT-MRAMs for use in L4 cache applications.

    In STT-RAM writing, an electric current is polarized by aligning the spin direction of the electrons flowing through a magnetic tunnel junction (MTJ) element. Data writing is performed by using the spin-polarized current to change the magnetic orientation of the information storage layer in the MTJ element. Intel improved the process and stack for L4 cache applications. STT-MRAM technology for L4 cache requires tighter bitcell pitches, which translate into smaller MTJ sizes and reduced available write current.

  • Organ Forceps With a Special Touch

    Our internal organs are slippery because they’re covered with blood and other body fluids, so grasping and pulling them with forceps can be challenging. Although contact-force sensors have been placed on the tips of forceps used in diagnostic laparoscopic and robotic surgeries, there currently is no way to know if they are slipping, other than visually via a monitor, which has limited usefulness. A Kagawa University team described a highly sensitive slip-sensing imager (sub-mm resolution) and novel algorithm that can, in effect, give forceps a sense of touch. The idea is to use the device to visualize the spatial distribution of the grasping force across the organ’s surface. The center of that distributed load is calculated, and as the forceps are moved the algorithm relates any corresponding movements of the load center to slippage. Built on an SOI wafer, the device’s force-sensor pixels consist of a 20µm–thick piezoelectric silicon diaphragm (400µm diameter) with a center contact, and with a force detection circuit integrated on the diaphragm. The diaphragm acts as a strain gauge as it flexes due to varying grasping force.

  • Impedance Sensor for Fingerprint Imaging

    Researchers led by Cornell discussed the monolithic integration of a piezoelectric aluminum nitride (AlN) resonator into a CMOS-controlled, GHz ultrasonic impedance sensor/imager. The device measures changes in surface properties such as surface oxidation, materials, liquid viscosity and others, and is meant for use in wearable, IoT and smartphone systems to detect fingerprints with high resolution, determine tissue states, and for other applications. This is the first time monolithic fabrication – all in one chip or die –  has been successfully demonstrated, and it led to small, power-efficient GHz sensing arrays with improved performance vs. the standard two-chip heterogeneous integration approach, thanks to less parasitic coupling and a higher signal-to-noise ratio.

  • Thin-Film Battery Goes High-Density

    The miniaturization of power sources hasn’t kept pace with the miniaturization of electronics. Although integrated electrochemical capacitors offer high power density, high frequency response and novel form factors, their low energy densities are of limited value for MEMS and autonomous device applications that require long periods between charging. CEA-Leti researchers discussed a thin-film battery (TFB) with the highest areal energy density yet reported (890 µAh/cm-2) and high-power density (450 µAh/cm-2). Built on silicon wafers using UV photolithography and etching for the successive deposition and patterning of each layer, the thin-film battery integrates a 20µm-thick LiCoO2 cathode in a Li-free anode configuration. It showed good cycling behavior over 100 cycles, and the fact it was built using a wafer-level process opens up the possibility to tightly integrate this battery technology with future electronic devices.

  • Physically Unclonable Function (PUF) for Mobile and Smart Devices

    The spread of networked mobile devices and smart gadgets in the IoT landscape has created an urgent need to protect them with lightweight and low-power cryptographic solutions. A physically unclonable function (PUF) is a hardware-intrinsic security primitive, or basic programming element. UC Santa Barbara researchers discussed an ultra-low-power PUF that operates on the varying electrical resistances and current leakages that arised from intrinsic process variations in ReRAM crossbar arrays. The team built 4K-ReRAM passive crossbar circuit arrays fabricated with a CMOS-compatible process suitable for back-end-of-the-line (BEOL) integration. The arrays allow for an extremely large number of challenge-response pairs (a common cryptographic protocol), as well as 4x better density vs. other ReRAM architectures plus a ~100x improvement in power efficiency and more robust security metrics.

  • Silicon photonics

    Very fast speed data races around within data centers via optical fiber, using silicon photonic (light-based) interfaces that operate at 100 Gb/s. But cloud data center traffic is growing at nearly 30% per year and there soon will be a need to increase the data rates. A STMicroelectronics-led team described a new silicon photonics technology platform built on 300mm Silicon-on-Insulator (SOI) wafers, yielding devices that operate at 400Gbits/s (each device has 4 channels, each of which operates at 100Gbits/s, for a total of 400Gbits/s).

    Optical coupling and polarization management are key requirements, and their devices incorporate a 60 GHz high-speed photodiode and a high-speed phase modulator. They also built devices with a supplementary SiN waveguide layer for higher coupling efficiency, to meet evolving data-transmission requirements. The researchers say the photonics platform has the potential to meet the requirements of applications other than data centers, too, such as automotive.

    The image is a photo of the chip-on-board assembly of an analog front-end (AFE) function implemented in a 400G-DR4 optical transceiver using the technology, and (2b) are PAM4 signal eye diagrams at 106 Gbits/s per channel, used to measure high-speed signal quality.

  • 5G and beyond

    One of the challenges for chip makers is how to integrate III-V materials with silicon to make ultra-fast devices for 5G and other uses, which are compatible with conventional CMOS technology.  In addition to silicon, III-V compound semiconductors are obtained by combining group III elements (essentially Al, Ga, In) with group V elements (essentially N, P , As, Sb). This gives us 12 possible combinations; the most important ones are probably GaAs, InP GaP and GaN.

    IOT and 5G applications typically use sensors that transmit wireless data to anedge or cloud network. This requires a combination of RF capabilities with a small form factor and low operating power. A promising approach to achieve this combination is to create single chips that combine the capabilities of silicon CMOS with those of III-V devices, such as gallium nitride (GaN) and indium gallium arsenide (InGaAs). The unique properties of III-V compounds make then well suited for optoelectronics (LEDs) and communications (5G).

    At IEDM, Intel talked described how low-leakage, high-k dielectric enhancement mode GaN NMOS and Si PMOS transistors were built monolithically on a 300mm Si substrate. The goal was to combine GaN’s high-frequency/-temperature/-power attributes with silicon CMOS circuitry’s digital signal processing, logic, memory and analog capabilities, to create compact devices for next-generation solutions for power delivery, RF and system-on-chip (SoC) applications. The researchers say both device types demonstrated excellent performance across a range of electrical specifications.

    III-V materials offer higher electron mobilities than silicon, and HBTs made from them are very fast transistors often used for RF and other high-frequency applications. A key goal is to build them on 300mm silicon wafers instead of other substrates, to take advantage of silicon’s lower manufacturing costs. A team led by imec described how they used a unique nano-ridge engineering technique to build GaAs/InGaP HBTs on a 300mm silicon substrate.

RELATED ARTICLES:

John Blyler is a Design News senior editor, covering the electronics and advanced manufacturing spaces. With a BS in Engineering Physics and an MS in Electrical Engineering, he has years of hardware-software-network systems experience as an editor and engineer within the advanced manufacturing, IoT and semiconductor industries. John has co-authored books related to system engineering and electronics for IEEE, Wiley, and Elsevier

top10-packaging-articles-2019

When out and about doing any kind of shopping this time of year, you can’t help but notice the eye-catching displays of limited-edition products and especially packaging aligned with the Christmas season as brands and retailers aggressively leverage the largest binge-worthy holiday opportunity of the year.

It was on a recent outing to a local Target Store that a package standing heads and shoulders among others in the front-of-store display of seasonal packs got drew my attention: a large and impressive stand-up, book-style microfluted package of Jim Beam’s Whiskies of the Season. Rather than rectangular, the distinctive package is designed with gables and measures about 15-in. high x 7 3/4-in. wide x 3 ¾-in. thick.

rPET bottles from CCEP

The attraction proved to be more than superficial after I quickly discovered the packaging delivers a lot of details and personality apart from the classy, irresistible allure of a tasteful on-shelf presentation.

We explore it from the outside in, with an assist from Kim Hanson, senior customer marketing manager for national accounts at Beam Suntory, who sets the stage in summarizing the reasoning for the packaging.

“Recognizing the growing trend around Holiday Novelty concepts and that national account customers are more and more interested in innovative offerings, we wanted to deliver a new and exciting gifting option for our loyal Jim Beam consumers,” she says. “We figured there was no better way to promote our range of bourbons than by highlighting our iconic rackhouses in Kentucky.”

According to the internet, a rackhouse—which I found to my amusement was also known as a rickhouse—is “a structure that holds barrels of alcoholic beverages during the aging process where barrels are typically stacked on their sides, often up to several stories high.”

That’s why in appearance and shape the pack is very building-like while retaining a high-end gift-package motif; the white and light-gray striped building’s front facing is adorned with a printed wreath surrounding the brand emblem figuratively “hung” near the top of the gable.

Below the wreath is the bold product name and below that is the tagline of “12 days of 50 mL gifts.” As a veteran packaging reporter and stylistic stickler, I appreciate that the bottle volume is stated as mL rather than ml.

The backside repeats the rackhouse motif along with a detailed listing of the samples inside, which include three Straight Bourbon Whiskeys and two each of Jim Beam Apple and Jim Beam Vanilla.

The package has a tamper-evident sticker that repeats the branded wreath element on the side that seals the hinged front and back sections together.

Next a look at the even more impressive inside.

___________________________________________________________________________________

WestPack 2020 February 11-13 presents the latest solutions in food and beverage packaging, automation, package design and more in an advanced manufacturing event that includes PLASTEC West and offers the Cannabis Packaging Summit, all held at the Anaheim Convention Center. Register to attend today! ___________________________________________________________________________________

In the name of full disclosure, you should know that this isn’t the first time the brand has done a gift pack like this.

“We launched this pack last year and brought it back this year,” Hanson says, pointing out that while the overall package structure remains the same, “we refreshed the creative slightly this year to align with our current Jim Beam global creative.”

A quick online search revealed last year’s pack; my take is that “slightly” is an understatement and that the brand really upped its game in 2019 via a dramatic exterior makeover moving from a dark to light color scheme both inside and out that better positions it as more upscale (you can follow this link to an unboxing video from a year ago).

The packaging design was handled by Proof, Beam Suntory’s internal creative agency, according to Hanson.

When opened, the giftpack book unfolds as a left-and-right spread display of 12 numbered printed barrels, all neatly stacked upright in two rows inside the rackhouse, six to a side. The interior is the same combination white/gray color as the exterior, and additionally is also printed with wooden beams; a branded wreath is “hung” from both gables.

Each printed barrel is a perforated compartment covered by a barrel-printed flap that opens up to reveal the 50mL plastic bottle of whiskey nestled inside. The back-of the barrel flap is printed with a recipe; for example, the barrel #2 flap (shown) shows how to make a Jim Beam Bourbon Sour. A nice detail is that there’s a small cutout for a finger hold to permit easy opening of the perforated compartment flap.

Hanson says the varieties remained the same this year as last.

How long did the packaging development take? “13 months is the average time to execute a package project,” responds Hanson. “These projects can take quite some time to finalize, and they require collaboration across multiple departments.”

The good news is that the brand has a 3.0 version scheduled for next holiday season.

Depending on state pricing, the suggested pricing is $17.99.

___________________________________________________________________________________

WestPack 2020 February 11-13 presents the latest solutions in food and beverage packaging, automation, package design and more in an advanced manufacturing event that includes PLASTEC West and offers the Cannabis Packaging Summit, all held at the Anaheim Convention Center. Register to attend today! ___________________________________________________________________________________

true-confessions:-a-plastics-engineer-discovers-the-true-meaning-of-black-friday

It happens every year, on the Friday after Thanksgiving. Stuff is on sale. All kinds of great stuff. And at incredible prices!

Person in street with shopping bags
Image: Ablokhin/Adobe Stock.

One story about the meaning of the phrase Black Friday is that retailers begin to turn a profit for the year on this day, with their net revenue number going from red to black. I have a hard time believing this. In fact, I have a hard time believing most company reports on profits and losses. I also have a hard time believing general statements on many corporate decisions. Often, the reasoning boils down to a simple statement: It’s not economically feasible.

I took my collection of PE film bags to my local Vons supermarket two days before Thanksgiving. The bag had been sitting in the trunk of my car for several weeks. Someone had referred me to a page to find a collection site. I entered my ZIP code, saw the name Vons on the list, got rather excited. Vons is owned by Albertsons Co., the second largest grocery company in North America. Here in Southern California, Vons stores are everywhere. When I saw Vons on the list, I assumed my local store was involved. I was wrong.

Seems my local store can’t be bothered with collecting plastic bags. I think I can guess the reason: It’s not economically feasible.

I am not an expert, but I know the basic economics of manufacturing and distribution: Fixed costs, variable costs, capital investment, amortization, overhead, gross vs. net, profit vs. loss. I know what’s involved in bringing a new product or new technology to market. Sure, there are times when something is not economically feasible, but there are also times when the real answer is: We don’t know how to do it. Or even worse: We don’t want to do it.

I don’t go shopping on Black Friday. I don’t like dealing with the crowds. Also, shopping online these days has gotten incredibly efficient. I can order anything I need online—the vendor selected based on reliability and cost efficiency—and have it delivered to my door, often at no extra cost. Sometimes, it arrives at my front door within a few hours of my ordering it. How can this be economically feasible?

The delivery itself is simple. The item is well packaged, usually in a cardboard box, with some bubble wrap, foam cushioning, packing peanuts, paper packing slips and receipts, and various PE shipping bags. If I want to keep the item, I take all of the packaging and put it in my recycling bin for curbside pickup. Of course, I am paying for this service via various taxes and fees, but I don’t know the cost breakdown, or if it is economically feasible. But the PE shipping bags I have to separate and take to a specialized collection site . . . which is not my local Vons.

But the funny thing is, if I want to return the item I just bought, with all of its packaging, all it takes is a couple of clicks. I put everything back in the box, drop it off at a local collection site and get a refund within minutes. How can this be economically feasible?

On May 25, 1961, President John F. Kennedy delivered a speech to a joint session of Congress. In that speech, he stated that the United States should set a goal of landing a man on the moon and returning him safely to Earth by the end of the decade. I don’t think he used the disclaimer, just as long as it is economically feasible.

That speech inspired America. In July of 1969, we landed human beings on the surface of the moon and brought them home safely. While we left behind all kinds of trash in the process, that event changed the world.

Today, some 50 years later, we are struggling with the issue of plastic trash. Yes, there are technical problems that need to be solved, but it seems that a lot of effort is being spent trying to determine what is—and what is not—economically feasible.  

Now that is what I call a Black Friday.

“We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win.”

― John F. Kennedy, Address at Rice University, September 12, 1962

The next part in this series will be published on Dec. 19. If you’re a newcomer to this series, you can read part one here.

Eric LarsonEric R. Larson is a mechanical engineer with over 30 years’ experience in designing products made from plastics. He is the owner of Art of Mass Production, an engineering consulting company based in San Diego, CA. Products he has worked on have been used by millions of people around the world.

Larson is also moderator of the blog site plasticsguy.com, where he writes about the effective use of plastics. His most recent book is Poly and the Poopy Heads, a children’s book about plastics and the environment. It is available on Amazon.

chemical-recycling-is-back,-and-it's-taking-a-seat-at-the-circular-economy-table

It is said that everything old becomes new again, and that adage is true for chemical recycling of plastic waste. Chemical recycling is a process that has been around for more than six decades but was almost unheard of until the so-called “plastic pollution crisis” came into the spotlight. Now, resin producers are looking at anything and everything in an attempt to find solutions for ridding the planet of plastic waste.

Recycling symbol in futuristic setting

An article in the Dec. 9 edition of the Wall Street Journal, “Plastics Recycling Gets Fresh Tech Push,” authored by Saabira Chaudhuri, discusses the resurgence of chemical recycling, noting that “companies are turning to [chemical recycling] now, partly because of the need to find more recycled material to meet or forestall regulations aiming to cut emissions and waste.”

Chemical recycling ran into the same problem that mechanical recycling encounters: The cost made recycled material more expensive than virgin resin, so what’s the point? Obviously, it has become increasingly important to capture the value of plastic waste and keep it out of the environment, giving rise to the return of chemical recycling, which is getting a lot of attention specifically for difficult-to-recycle plastic waste.

On October 24, 2019, BP announced the development of BP Infinia, which enables currently unrecyclable polyethylene terephthalate (PET) waste to be diverted from landfill or incineration and, instead, transformed back into new, virgin-quality feedstock. To that end, BP plans to construct a $25-million pilot plant in Naperville, IL, to prove the technology, before progressing to full-scale commercialization, according to the company’s press release.

BP’s information noted that Infinia technology is designed to turn difficult-to-recycle PET plastic waste, such as black food trays and colored bottles, into recycled feedstock that is interchangeable with material made from traditional hydrocarbon sources. The recycled feedstock can then be used to make new PET packaging that can be recycled again and again. This could reduce the need for downcycling and divert plastic waste from landfill and incineration.

Chaudhuri mentioned that BP’s CEO, Robert Dudley, told investors earlier this year that BP sees chemical recycling as a “game changer,” but also noted that most recycling technologies have to overcome various hurdles. One of those is “getting a steady supply of material to recycle.”

What are the pros and cons, challenges and opportunities of traditional and emerging recycling technologies? How effective are returnable packaging schemes in reducing plastic waste? Clare Goldsberry tackles these questions in “Real world solutions to the plastic waste challenge.” The article can be downloaded free of charge here or by going to the Whitepapers tab on the PlasticsToday home page.

The demand for rPET is big and growing, but another obstacle is collection and, if it is to be virgin-like, eliminating contamination of the recyclate. BP said that it sees the potential to develop multiple full-scale commercial plants using this technology around the world. If deployed at scale in a number of facilities, BP estimates that the technology has the potential to prevent billions of PET bottles and trays from ending up in landfill or incineration every year.

Ineos Styrolution and Agilyx jointly announced on Dec. 9 that they are advancing the development of a polystyrene (PS) chemical recycling facility in Channahon, IL. The facility will be capable of processing up to 100 tons per day of post-consumer PS and converting it into a styrene that will go into the manufacture of new polystyrene products. The facility will leverage Agilyx’s proprietary chemical recycling technology, which breaks down polystyrene to its molecular base monomers that will be used for the creation of new styrenic polymers. This is a true circular recycling approach that enables everyday products, like a cup, to be recycled back into a cup, said the announcement.

Agilyx recently completed a successful development program for Ineos Styrolution that qualified the styrene product to Ineos’ specifications and the post-consumer PS feedstock for the process. The next phase of the project advances the engineering and design of the facility.

“This plant will dramatically increase recycling rates in the greater Chicago area, dispelling the myth that polystyrene can’t be recycled,” said Ricardo Cuetos, VP Ineos Styrolution Americas, Standard Products. “Agilyx’s chemical recycling technology is a game changer to advance the circular recycling pathway of plastics. A benefit of chemical recycling is there is no degradation over multiple cycles—the polymers can continue to create new products over and over again of the same purity and performance as virgin polystyrene. We are thrilled to partner with Agilyx on this project.”

The proprietary Agilyx process can recycle polystyrene contaminated with food and other organics and convert it back into new, food-grade plastic products or packaging. The process demonstrates that so much more post-consumer plastics in the world today can be chemically recycled into new plastic products again and become a renewable resource.

“Polystyrene is the best option for prepared food and beverage containers,” said Agilyx CEO Joe Vaillancourt. “We are excited to be working with Ineos Styrolution to advance this chemical recycling pathway that has the ability to significantly increase recycling rates all over the world.”

Image: Sergey Nivens/Adobe Stock

unemployment-rate-hits-historic-low,-but-manufacturing-has-sluggish-year

The latest reports on the economy show mixed results. The Bureau of Labor Statistics (BLS) reported that 266,000 non-farm payrolls were created in November, pushing the unemployment rate to a historically low 3.5%. Government data released today showed the United States added far more jobs than expected in November, “relieving concerns that one of the brightest spots in the economy may have started to run out of steam,” said Business Insider in its Markets report.

Profit and loss graphic

Manufacturing employment also increased in November, noted the Alliance for American Manufacturing (AAM). The sector gained 54,000 jobs, according to the BLS, with the bulk of growth coming from automotive jobs. AAM’s President Scott Paul commented: “With only one month left in 2019, Trump’s promise that manufacturing jobs will boom has sputtered. November’s jobs number was aided by UAW workers securing a new contract and returning to the factory floor.

“Overall, 2019 factory job growth has been incredibly weak, lagging well behind 2018 and underperforming [compared with] the rest of the economy. While there has been periodic bluster about policies to boost infrastructure and stop China’s cheating, no real progress has been made to date. American workers deserve better from the administration and Congress,” said Paul.

Nick Bunker, Research Director at Indeed Hiring Lab, commented to Business Insider, that the high number of jobs added in November doesn’t tell the whole story. “You might forget that the story for most of this year was that the economy was slowing down,” he said. “The slowdown did happen, but we can move into 2020 with a bit more optimism.”

Business Insider reported that while wage growth continued to outpace inflation last month, it “remained stubbornly below what would be expected with an unemployment rate at its lowest level in half a century. Average hourly earnings rose 3.1% year-over-year in November, a slight uptick from a month earlier but short of the peak growth levels seen in early 2019.”

November’s Purchasing Managers Index from the Institute for Supply Management (ISM), released on Dec. 2, showed yet another contraction to 48.1 from October’s 48.3. In fact, most of the index measurements were in the “contracting” mode even though the index showed the overall economy “growing.”

New orders for November fell to 47.2 from October’s 49.1. New export orders also fell from 50.4 (growing) in October to 47.9 (contraction) in November. Production’s contraction slowed from October’s 46.2 to 49.1 in November. Inventories contracted faster, from 48.9 in October to 45.5 in November, and customer inventories fell to levels considered “too low,” from 47.8 in October to 45.0 in November. Order backlogs also dropped 1.1% in November to 43.0.

Comments from respondents to ISM’s November survey included this one from a machinery supplier: “Demand has stabilized for the last half of [the fourth quarter], and production will be stable for the rest of this year.”

A respondent from the plastics and rubber products sector commented, “Heading into the holiday season, we are seeing the backlog decrease, as new orders for 2020 seem lighter than in past years.”

A new report from ResearchAndMarkets (Global Plastic Processing Machinery Markets Report 2019: 2017-2018 Data & CAGR Projections 2019-2023), noted that “increasing demand for processed food and beverages, followed by increasing requirements for packaging, is fueling the overall growth in the plastics processing machinery market. The increasing demand for plastics in a variety of applications is expected to fuel growth of the plastics processing machinery global market. Accuracy, reliability, and energy efficiency play an important role in the growth of plastic processing machinery global market.”

Image: Hywards/Adobe Stock

how-to-think-about-plastics-in-2020

Since 1950, approximately 8.3 billion metric tons of virgin plastics have been produced worldwide, the equivalent of 176 million big rigs.

Less than 20% of that plastic has been recycled or incinerated, leaving nearly 80% to accumulate in landfills or as litter in our natural environment. Despite its significant contributions to innovation, the plastics industry has garnered increasing criticism over the years for its environmental impact. In a poll conducted by market research firm Morning Consult in 2018, a majority of people (55%) reported that they did not believe corporations were doing enough to reduce waste that could make it into the environment, and two-thirds of individuals (66%) reported that they would view companies more favorably if they implemented policies to reduce plastic waste.

So, why do we continue to use plastics in the first place?

Alex Hoffer, VP, Hoffer Plastics Corp.
The argument to remove plastics from our way of life entirely is not a feasible option for Alex Hoffer, Vice President of Sales and Operations at Hoffer Plastics Corp.

The technical answer is that plastic has a high strength-to-weight ratio and can be easily shaped into a wide variety of forms that are impermeable to liquids and are highly resistant to physical and chemical degradation. These materials can be produced at a relatively low cost, making it easier for companies to sell, scale, save and so forth. The primary challenge is that the proliferation of plastics in everyday use in combination with poor end-of-life waste management has resulted in widespread and persistent plastic pollution. Plastic pollution is present in all of the world’s major ocean basins, including remote islands, the poles and the deep seas. An additional 5 to 13 million metric tons are introduced every year.

However, consider for a moment the possibility that the plastics industry is doing more good than harm, and that the environmental issues the industry faces have more to do with recycling than production.

Here is how we should be thinking about plastics in 2020.

Plastics and the environment

Austrian environmental consultancy Denkstatt recently conducted a study to determine the impact of farmers, retailers and consumers using recyclable products (wood, tins, glass bottles and jars, and cardboard) to package their goods rather than plastic. What they found was that the mass of packaging would increase by a whopping 3.6 times, and would take more than double the energy to make, thereby increasing greenhouse gases by an astounding 2.7 times.

One common proposal for replacing plastics with different materials is to replace plastic bags with paper ones in grocery stores. While this may sound like a more sustainable solution, the data does not support it. By volume, paper takes up more room in landfills and does not disintegrate as rapidly as plastic. Because of this, plastic bags leave half the carbon footprint of cotton and paper bags.

Plastics and hunger

In my visits to the Northern Illinois Food Bank, I’ve had the honor to serve those in need of access to nutritious food. While helping stock the pantry or pass out holiday baskets, I couldn’t help but notice how food packaging alone impacts visitors’ perceptions. Most of the food at the food bank is canned or jarred, yet it is the plastic-wrapped food that always looks fresher and a little less dangerous.

Now, consider the properties of plastic that make it so attractive: It is durable, flexible, does not shatter, can breathe (or not) and is extremely lightweight. As a result, food and drink are protected from damage and preserved for previously unimaginable lengths of time.