what-happened-to-intel’s-early-facial-recognition-platform?

Facial recognition technology is one of the big trends at CES 2020. That’s not surprising since facial recognition market is expected to grow from USD 5.07 billion in 2019 to USD 10.19 billion by 2025, according to Mordor Intelligence. The hardware market is segmented into 2D and 3D facial recognition systems with the latter expected to grow the most in the coming decade.

Image Source: Intel / SID  

One of the early hardware platforms that would enable facial recognition was Intel’s Realsense. When the platform was first introduced in 2015, it was positioned as a way for PCs, mobile phones and robotic systems to see beyond two-dimensions or 2D. The smart-camera-based system was capable of sensing the third-dimension or depth perception to better understand objects in its environment. Since the first introduction in 2015, the camera-based system has gotten even smaller in size yet better in performance thanks to the scaling benefits of Moore’s Law.

One of the reasons for the early adoption and growth of the system was that software developers had free access to all of the Realsense APIs. These interfaces interacted with the camera to enable motion tracking, facial expressions – from smiles and frowns to winks – and more. Gesture tracking was also provided to create programs for those cases when users could not really touch the display screen, as while using a cooking recipe. 

“Computers will begin to see the world as we do,” explained Intel’s then CEO Brian Krzanich at the 2015 Society for Information Display conference. “They will focus on key points of a human face instead of the rest of the background. When that happens, the face is no longer a square (2D shape) but part of the application.”  

At the time, one of the early companies adopting the technology was JD.com, a Chinese online consumer distributor. JD.com had replaced its manual tape ruler measurements with container dimensions captured by the RealSense camera platform. This automation had saved almost 3 minutes per container in measurement time. 

Image Source: Intel / SID

Back then, the big deal was to move from 2D to 3D computing, where the third dimension really meant adding depth perception. An example of this extra dimension was given by Ascending Technology, a Germany company that used the Intel platform to enable a fast-moving drone to move quickly through a forest including up and down motions. To accomplish this feat required the use of multiple cameras and an processor.

Now, fast forward to CES 2020, where Intel’s Realsense has further evolved into a platform that not only supports depth perception but also tracking and LiDAR applications. Tracking is accomplished with the addition of two fisheye lens sensors, an Inertial Measurement Unit (IMU) and a Intel Movidius Myriad 2 Visual Processing Units (VPU). The cameras scan the surrounding areas and the nearby environment. These scans are then used to construct a digital map that can be used detect surfaces and for real world simulations.

One application of depth perception and tracking at CES was for a robot that would follow its owner and carry things. Gita, the cargo robot from the makers of Vespa, not only followed it owner but also tracked their where-about on the CES exhibitor floor.

LiDAR (Light Detection and Ranging) was the newest addition to the Realsense platform. LiDAR cameras allow electronics and robots to “see” and “sense” the environment. Such remote sensing technology measures distance to a target by shining the target with a laser light and then measuring the reflected light. It is very accurate and is being used in the automotive industry to complement ultrasonic and regular cameras.

At CES 2020, one of the highlighted LiDAR applications was a full body, real-time, 3D scan of people. Another application of LiDAR was skeletal motion tracking with the Cubemos Skeletal tracking SDK, which boasted the capability to integrate 2D and 3D skeleton tracking into a program with a mere 20 lines of code. The SDK provided full skeleton body tracking of up to 5 people.

Image Source: Intel / Realsense LiDAR

Since its release over 5 years ago, there have been many competitors to Intel’s Realsense platform, including Google Scale, Forge, ThingWorx Industrial IoT, and several others. Such healthy competition attests to the market for compact, relatively inexpensive camera platforms that are capable of depth perception, tracking objects an using LiDAR for scanning of shapes.

John Blyler is a Design News senior editor, covering the electronics and advanced manufacturing spaces. With a BS in Engineering Physics and an MS in Electrical Engineering, he has years of hardware-software-network systems experience as an editor and engineer within the advanced manufacturing, IoT and semiconductor industries. John has co-authored books related to system engineering and electronics for IEEE, Wiley, and Elsevier.

fiber-optic-sensor-moves-robot-in-near-real-time

Although not as prominent at this year’s 2020 CES, fiber optics sensing technology has been a highlight of past shows. Fiber optic sensing measures changes in the backscattered light in a fiber cable, which can happen when the fiber undergoes a vibration or strain. When attached to an opto-electrical connection, the fiber optic sensing can be used as a hyper-sensitive measurement device for electronic systems.

NASA, among other R&D agencies, began developing Fiber Optic Sensing Systems (FOSS) technologies over 5 years ago. Innovators at NASA’s Armstrong Flight Research Center began using FOSS to monitor the safety of aircraft structures in flight, but quickly found other uses for the technology in civil structures, transportation, oil and gas, medical, and many more spaces.

Image Source: Fraunhofer / SPIE Photonics / John Blyler

Germany’s Fraunhofer, one of Europe’s largest application-oriented research organizations, has been exploring the use of a related technology, namely, fiber optical 3D Shape Sensing. One application they have been studying is the real-time shape and position sensing of the fiber anywhere along the length of the optical fiber. Such sensors provide highly accurate measurements as the fibers twist and bend at every point along the sensor.

A few years back, Fraunhofer showed the value of using fiber optic sensing to accurately control the movements of a robot. The video below provides a convincing demonstration of this technology.

John Blyler is a Design News senior editor, covering the electronics and advanced manufacturing spaces. With a BS in Engineering Physics and an MS in Electrical Engineering, he has years of hardware-software-network systems experience as an editor and engineer within the advanced manufacturing, IoT and semiconductor industries. John has co-authored books related to system engineering and electronics for IEEE, Wiley, and Elsevier.

goodyear-rejoins-international-road-racing-in-the-world-touring-car-championship

A WTCR Volkswagen GTI in 2019. Image source: World Touring Car Championship

Goodyear Tire & Rubber Co. is emerging from its retreat from global road racing competition that began with its 1998 withdrawal from Formula 1, as the Akron, Ohio tire giant announced that it will replace The Yokohama Rubber Co., Ltd. as the sole supplier to the World Touring Car Championship (WTCR) series for 2020.

In the intervening decades, Goodyear has been the sole supplier to NASCAR stock car racing’s top series, but was absent from road racing until 2019, when the company began supplying tires for the second-tier Le Mans Prototype 2 category in the World Endurance Championship and for the LMGTE category in the European Le Mans Series.

Image source: Goodyear Tire & Rubber Co.

This year will mark Goodyear’s return to racing at the 24 Hours of Le Mans sport car classic. Ideally, Goodyear would one day return to Formula 1, considering that the company’s flagship Eagle F1 SuperSport street tire line employs the nomenclature of a racing series from which it has been absent for more than two decades.

“We are excited to be joining Eurosport and the Federation Internationale de l’Automobile (FIA) by becoming the official tire supplier for the FIA WTCR,” stated vice-president and chief marketing officer for Goodyear Consumer Europe, Mike Rytokoski. “This complements our recent comeback into global motorsport through the FIA World Endurance Championship. It allows Goodyear to connect with fans in a wide range of countries, and also prove the performance of our Goodyear Eagle F1 SuperSport range of racing tires.”

The tires used in in the WTCR series will carry that Eagle F1 SuperSport branding in support of the recent launch of Goodyear’s line of ultra, ultra high performance- (UUHP) segment of tires for street cars.

Goodyear motorsports director Ben Crawley. Image source: Goodyear Tire & Rubber Co.

Considering Goodyear’s absence from this kind of racing for so long, it begs the question of where the company found experts to develop the tires for the upcoming WTCR season. “Goodyear’s European innovation team, with associates in Luxembourg, Germany and the UK, have years of motorsport experience derived from other group racing projects,” replied motorsports director Ben Crawley. “This includes extensive Touring Car experience. There are also parallels between the components and materials tires used in WTCR and those used in our ultra-high performance Eagle F1 SuperSport street-legal range.”

Tires developed for racing balance a variety of factors, including absolute maximum lap time, durability, operating temperature range and others, which can force engineers to balance conflicting priorities. Goodyear’s engineering team took those things and more into consideration when working on the WCTR tires, Crawley said.

“The WTCR races feature intense competition between a diverse range of cars,” he said. “One priority is to supply tires that work equally well on each brand of car.”

Not only are the tires different, but the various tracks also place different demands on the tires, Crawley pointed out. “WTCR visits a really challenging mix of circuits. Ranging from street tracks in Morocco or Macau to the long flat-out stretches of the Nurburgring Nordschleife, it’s vital that the Goodyear tires perform consistently.  A key product requirement is to ensure low tire degradation delivering very consistent product performance from the first to last race laps.” 

While the touring cars bear a passing resemblance to NASCAR’s stock cars, the tires are very different, according to Crawley. “The width of the NASCAR and WTCR tires may be similar, but the first big difference is that NASCAR uses 15-inch diameter wheels and WTCR uses 18-inch wheels,” he explained. “This means the WTCR tire profile is much lower, with a shallower sidewall. The NASCAR tires have to cope with long banked corners with immense G-forces, whereas a WTCR tire has to focus more on traction, braking and directional stability in a mix of corners.”

A Hyundai touring car at the carousel turn on the Nurburgring. Image source: Goodyear Tire & Rubber

Goodyear’s deal with the WTCR is for three years, and it will present the first tires to teams for their test sessions in February and March. As the first half-dozen events in the 10-race 2020 season are in Europe (one of them is Europe-adjacent in Morocco), the WTCR is hoping to rekindle fans’ memories of Goodyear’s participation in the European Touring Car Championship in the 1970s and ‘80s.

“Goodyear has a long and successful history in motorsport and we are very proud it has chosen the WTCR as an international racing flagship,” said François Ribeiro, Head of Eurosport Events, the WTCR promoter. “We have no doubt that Goodyear will be a first-class partner on the technical and marketing fronts of WTCR.”

Touring cars racing on the streets of Macau. Image source: Goodyear Tire & Rubber Co.

Dan Carney is a Design News senior editor, covering automotive technology, engineering and design, especially emerging electric vehicle and autonomous technologies.

pico-interactive-is-one-of-the-best-kept-secrets-in-vr
The Pico G2 4K (Image source: Design News)

Unless you’ve been deeply entrenched in the VR space for years you might be forgiven for not knowing about Pico Interactive. While big names in VR hardware like HTC and Oculus have only recently shifted their focus to creating standalone headsets (ones that do not need external sensors or a PC to operate), standalone has been Pico’s focus from the very beginning.

The San Francisco-based company, made a quiet, but significant, showing at the 2016 Electronic Entertainment Expo (E3) with a small, standalone headset called the Pico Neo. The Neo was an Android-based gaming headset that actually boasted some impressive specs for its size. It was based on the same Snapdragon 820 chipset behind the early Oculus Rift and HTC Vive headsets, offered a 90 Hz refresh rate, and a 110-degree field of view.

When we spoke to Pico in 2016, Ennin Huang, Pico’s VP of Design, said the company’s vision was pretty straightforward – “We really wanted to push VR and make it affordable for everyone without comprising the graphics and experience.”

The way to do that, Huang said, was by offering users a lightweight, untethered experience.

The Pico Neo didn’t make a big splash in the US. But it turned out Huang was right.

In recent years VR hardware makers have pivoted into offering headsets that are not only lighter and more powerful, but, most importantly, standalone. The latest hardware from Oculus, the Oculus Quest, is an all-in-one headset targeted at gaming with six degrees of freedom (6DoF) tracking. The Quest, the less robust Oculus Go, other standalone models such as the HTC Vive Focus, and the (fortunate) death of smartphone-based VR headsets point to one clear trend for future of VR hardware – wireless, standalone, and powerful.

But Pico Interactive hasn’t stood still. In recent years the company has pivoted into targeting its headsets specifically at engineers, designers, and other enterprise users – with the aim of providing a convenient and mobile experience for applications ranging from virtual prototyping and design, to education, and even medical applications.

Design News had a chance to go hands-on with one of Pico Interactive’s flagship enterprise headsets, the G2 4k, and found it to be one of the best overall user experiences to date. The G2 4K is very light (276 grams according to company specs) and very well-balanced. The 4K resolution, comes through crystal clear thanks to LCD displays and the use of fresnel lenses (which also help contribute to the unit’s light weight).

In terms of overall image quality, the G2 4k rivaled high-end PC-based enterprise headsets like HP’s Reverb, despite having a lower-resolution (3840 x 2160, or roughly 1920 x 1080 per eye).

“We conducted a lot of human-factors study for the G2 4K,” Huang told Design News in a recent interview. “There are two main strategies for tackling the overall weight issue: First, the material for the G2 4k is carefully selected to achieve the lightest weight possible while still keeping it affordable for everyone. Second is the weight distribution – we want to make sure the overall center of the mass is somewhere close to the center of the user’s head when the user is wearing the headset. To achieve that we have moved some of the components to the back of the head-padding while still keeping the form factor as compact as possible.”

The G2 4K’s fresnel lenses lend to its light weight and image quality, while its foam face cushion and adjustable Velcro staps support overall comfort. (Image source: Design News) 

With a 101-degree field of view and a 75 Hz refresh rate, the G2 4K does fall below the specs of more entertainment-focused headsets. But then again, enterprise software apps don’t usually require the same high frame rates as, say, the latest action game.

The G2 4K is built on the Snapdragon 835, Qualcomm’s first chipset offering targeted at mobile VR and augmented reality. It’s the same chipset behind the highly-praised Oculus Quest.

Aside from the headset having its own online store (the Pico Store), the company also offers an SDK for the G2 4K that we found supports both Unreal and Unity engines. For those who might be put off by the thought of learning a new SDK or having to purchase apps within a proprietary store, the headset is also compatible with the Wave SDK for the HTC Vive line of headsets and also supports apps from HTC’s Viveport. We tried running a few enterprise apps from Viveport on the G2 4K and didn’t notice any difference in performance.

Where one might find disappointment with the G2 4K is that it is only offers three degrees of freedom (3DoF) tracking for both the controller and the headset, which can significantly limit user mobility depending on the application. Some enterprise users who prefer a more fixed design space won’t notice the difference at all, but someone like an automotive engineer or architect for example, who might prefer to be able to walk through a virtual space at room scale, might be frustrated at having to use point-and-click navigation to move around.

The G2 4K’s controller is compact and comfortable, but only offers 3DoF tracking. (Image source: Design News)

Asked about the decision to give such a visually powerful headset only 3DoF tracking, Huang said the decision came down to offering a product with the right specs for enterprise users but would also provide a comfortable barrier to entry for new users. “We think 3DoF and 6DoF both have their niche in enterprise solutions,” Huang said. “While 6DOF is great for a little more advanced users, the 3DoF VR training and tutorials experience is great for someone who has never had or had a very little VR experience. In fact, many users of our enterprise-customers have never used VR before.”

Very serious enterprise users will probably opt for a PC-based setup along the lines of the HP Reverb or HTC’s Vive Pro. But smaller organizations or those looking to get their feet wet in implementing VR into their workflow, and who hold high value in an untethered experience, could find the G2 4K a more economical option capable of still delivering in terms of image quality and overall performance.

The G2 4K features two external speakers, audio jack, a micro SD card slot, USB-C port, and a built-in microphone. (Image source: Design News) 

Enter the Neo 2

At the time we spoke, Pico Interactive was shipping another headset, the Neo 1, which featured 6DoF head tracking and a 3DoF controller, in Japan, China, and parts of Europe. Huang teased that the company’s R&D team was working on prototypes for headsets that offers 6DoF head and controller tracking, but declined to provide any further details.

However at CES 2020, Pico made another announcement that should please users who demand a 6DoF experience with their VR.

The company’s latest headset, announced at CES 2020, is the Neo 2, a standalone enterprise headset with 4K resolution and 6DoF inside-out tracking. A second version, the Neo 2 Eye, features eye tracking and foveated rendering capabilities courtesy of Tobii, the go-to supplier of eye tracking sensors and analytics technologies for VR.

The Pico Neo 2 debuted at CES 2020. (Image source: Pico Interactive)

Based on the Qualcomm Snapdragon 845 platform, the Neo 2, is a bit heavier than the G2 4K (350 grams, according to specs), and features the same resolution, lenses, and refresh rate. Where the headset takes a step up from previous models in utilizing the 845’s integrated simultaneous localization and mapping (SLAM) technology for room-scale 6DoF tracking. Both models of the Neo 2 also feature two mono fisheye external cameras.

For its part, Tobii says the foveated rendering technology integrated into the Neo 2 allows it to increase framerates by up to 66 percent and reduces shading loads by up to 72 percent, which gives the headset improved visual performance without sacrificing performance or draining battery life.

The addition of eye tracking also gives Neo 2 users a novel control scheme (navigating apps and menus via eye movement) and can also be used to capture gaze data to assist with training applications as well as capturing user behavior insights.

It’s a pretty big leap for a company that started with mobile gaming, though Huang said Pico hasn’t left its roots behind. And while enterprises may be the first to take note of what Pico is offering, Huang said the company believes first in serving VR users in any application they desire.

“Mobile gaming and entertainment are still part of our focus, and in fact, we have been doing pretty well in Asia in places like Korea, Japan, and China. In addition to the consumer market, we also see great opportunities where Pico can provide enterprise solutions for many of our business partners,” Huang said.

“The motivation behind all the Pico products has always been the same since we’ve started back in 2016; it has always been user-first design.”

Chris Wiltz is a Senior Editor at  Design News covering emerging technologies including AI, VR/AR, blockchain, and robotics

want-to-build-an-open-source-hardware-and-software-robot?

The 2020 Consumer Electronics Show (CES) is full of engineering marvels. Many of these marvels are manifested as advances in robots. For example, consider UBTech highlights are this year’s show. The company’s intelligent humanoid service robot named “Walker” won the Best of CES 2019 and will be back with additional features at the 2020 show. According to the company, Walker will be faster and demonstrate more human-like walking as well as yoga poses that show its huge improvement in motion control. The robot will also demonstrate the ability to push a cart, draw pictures, and write characters, plus showing improved static balance with full-body compliance control.

There’s another robot system that the technical community might find equally interesting if a bit less flashy. France’s Pollen Robotics is displaying their “Reachy” robot at CES2020. In collaboration with the INCIA Neuroscience Institute in France, the company has developed a 3D-printed robot arm that’s 100% open source. Reachy is billed as an expressive humanoid service robot specializing in interacting with people and manipulating objects. This robot is built with prepackaged AI and modular robotics that should easily accommodate many real-world applications, such as extensions for disabled people (human augmentation), helping out at events (like CES), assisting small businesses and even as a receptionist.

According to the company, Reachy can be easily programmed in Python and offers ready-to-use operational environments for game play, serving coffee, making music, handing out specific objects, and more. The robot is also fully customizable with open hardware, software and data!

The company invites developers to join their open source community and participate on Github, although the company explains that Reachy is currently still under development. The open source hardware, software and data won’t be released until the robot is ready, toward the end Q1-2020.

Image source: Pollen Robots / Reachy

But what does it really mean to say a company or platform supports open hardware and software/  

we-are-one-step-closer-to-3d-printing-donor-organs-in-outer-space

You might call it a giant leap for 3D bioprinting: Human heart cells have been 3D printed on the International Space Station (ISS) and are making their way back to Earth this week inside a SpaceX capsule. The 3D BioFabrication Facility (BFF) was developed by Techshot Inc., a commercial operator of microgravity research and manufacturing equipment, in partnership with nScrypt, a manufacturer of industrial 3D bioprinters and electronics printers.

“Our BFF has the potential to transform human healthcare in ways not previously possible,” said Techshot President and CEO John Vellinger. ”We’re laying the foundation for an entire industry in space.”

3D BioFabrication Facility
The 3D BioFabrication Facility is the first U.S. 3D printer capable of manufacturing human tissue under microgravity conditions, according to Techshot Inc.

If you’re wondering why they don’t just print the cells here on Earth, the answer is gravity. When attempting to print with soft, easily flowing biomaterials on Earth, the tissues collapse under their own weight, resulting in little more than a puddle, explained Techshot in a press release. “But when these same materials are used in the microgravity environment of space, the 3D-printed structures maintain their shapes.” The bio-ink used in the space station, consequently, did not contain the scaffolding materials or thickening agents normally required to resist the Earth’s gravitational pull.

The test prints made in space are large by terrestrial bioprinting standards, measuring 30 mm long by 20 mm wide by 12.6 mm high. The BFF printed inside a Techshot-developed cell-culturing cassette that strengthens the assemblage of cells over time. The tissue-like structure is expected to be viable and self-supporting once it is back in Earth’s gravity.

More 3D bioprinting in space will take place in March following the delivery of additional bio-inks to the ISS National Laboratory aboard SpaceX mission CRS-20.

Following that round of test prints, Techshot expects to declare BFF open for business to industrial and institutional life science customers. Including the bioprinter, Techshot owns and operates five commercial research and manufacturing payloads aboard the ISS, reportedly the largest catalog of any American company operating inside the orbiting lab. A sixth payload, the Techshot Cell Factory, is under development. It will enable the company’s customers to continuously generate multiple cell types in space and not rely entirely on cargo resupply spacecraft transporting the cells.

Although the prospect of manufacturing human hearts and other organs via a 3D bioprinter in space is at least a decade away, Techshot is hopeful that the long-term success of the BFF could lead to a reduction in the shortage of donor organs.

Founded more than 30 years ago, Techshot operates its own commercial research payloads in space and serves as the manager of three NASA-owned ISS payloads. Test experiments, such as the one described in this article, aside, the company rarely conducts its own research. Its business model entails providing equipment on board the station for a fee to those with their own independent research programs, serving as a one-stop resource for organizations that want access to space.

Headquartered in Greenville, IN, and with an office at the Kennedy Space Center in Florida, Techshot is an official Implementation Partner for the ISS U.S. National Laboratory. It has agreements with NASA that provide the company and its customers with access to space cargo transfer services and assistance from the on-orbit crew.

six-trends-impacting-the-global-automotive-plastics-market-in-the-new-decade

Plastics have improved the performance, structure and safety of automobiles, and they are a major contributor to lightweighting and, thus, enable fuel efficiency and a reduction in greenhouse gas emissions. Consequently, the automotive plastics market has emerged as a vital business space: Valued at $23.7 billion globally in 2016, demand for plastics in the automotive sector is projected to expand 11% CAGR and reach a market value exceeding $50 billion by 2024.

Speedometer showing 2020

Spurred by rigorous regulations, especially in terms of fuel efficiency, plastics are a key factor in the manufacture and design of automotive vehicles. In addition to reducing the mass of parts used in vehicles, plastics provide more design freedom vis-à-vis metals. Other advantages include the material’s recyclability, abrasion resistance, durability, strength and vibration control.

Based on research conducted by Global Market Insights (Selbyville, DE), here are some key trends that will define the automotive plastics market through 2024.

  • Demand for polypropylene (PP) will increase. It is being sourced for automotive interiors and exteriors, as well as under-the-hood applications, often replacing metal parts. In a bid to neutralize battery weight, PP will proliferate as electric vehicle (EV) production surges.
  • Polyethylene (PE) consumption is likely to remain stagnant. While high-density PE continues to replace steel in gas tanks, the newest trend affecting PE demand is the rising proliferation of EVs. In electric vehicles, PE mainly finds deployment in engine parts, since electrically powered engines obviate the need for plastics engineered for high-temperature environments.
  • Although ABS consumption may take a hit as the use of PP composites increases, it will remain in demand for some high-end automobiles because of its perceived quality for automotive interiors. The use of ABS in wheel covers and body parts has been increasing on account of the fact that this material enhances toughness, impact resistance and heat resistance in the final plastic product.
  • Polycarbonate (PC) is setting a new bar for autonomous vehicles, as well as in lighting and electrification in traditional vehicles. Also, PC exhibits exceptional impact, thermal, electrical and weathering properties. The combination of toughness, hardness and stiffness will drive the use of PC in the automotive plastics industry.
  • PVC will witness traction thanks to its enhanced flame retardance, excellent flexibility, low (to no) lead content and high gloss. PVC can be compression molded, injection molded and blow molded to form a range of products. Accordingly, demand for PVC in automobile instrumental panels and doors is expected to grow through 2024.
  • North America and Europe will continue to attract investors into the automotive plastics market, as polymer consumption in this sector experiences unprecedented growth through 2024.

Despite the buzz about advanced materials such as carbon fibers and aluminum, plastics continue to replace metals in automotive parts thanks to technological advances that have bolstered the material’s tensile strength and other properties.

Demand for plastics in automotive exteriors has brought a paradigm shift to auto body design. In addition to lightweighting, the use of plastics allows manufacturers to lower production costs, advance modular assembly practices and improve the aerodynamic properties of car exteriors.

Plastics help manufacturers to meet Corporate Average Fuel Economy (CAFE) standards and cater to market trends and the buying habits of consumers who want products and companies to be environmentally responsible. The adoption of polymer technologies by automotive engineers is expected to continue in passenger cars and mass transit vehicles. PE and PVC appear to stand out amid growing calls for recyclability, but demand for PC and PP also will continue to gain traction. The automotive plastics market will experience a remarkable transformation in the ensuing period.

Global Market Insights Inc. has published a market report dedicated to global automotive plastics. For more information and to purchase the report, go to the company’s website.

Image: Peterschreiber.media/Adobe Stock

About the author

Sunil Kumar Jha is Research Content Developer with Global Market Insights.

hyundai-debuts-a-vertical-take-off-air-taxi

The full-size S-A1 mock-up displayed at CES. Image source: Hyundai Motor Co.

Carmaker Hyundai Motor Co. revealed plans at the Consumer Electronics Show in Las Vegas to manufacture electric Vertical Take-Off and Landing (eVTOL) tilt rotor aircraft to serve as air taxis for a planned Uber passenger service called Uber Elevate.

This four-rotor aircraft looks like a cross between a radio-controlled drone and the Bell V-280 Valor military tilt rotor aircraft. Like a drone, the Hyundai S-A1 aircraft has numerous rotors that are powered by electric motors. Like the V-280, the S-A1 can be piloted by a human, carries passengers, and tilts its rotors forward for high-speed flight between take-off and landing.

Bell V-280 Valor tilt rotor aircraft. Image source: Bell Textron Inc.

The S-A1 has a cruising speed of 180 mph, with an operating ceiling of 2,000 feet and enough battery capacity for a 60-mile range. The company says it will be able to recharge in just five to seven minutes. The four main rotors simultaneously provide redundancy in case of failure and reduced noise compared to using fewer, larger rotors, according to Hyundai. In addition to the four tilting rotors, there are two pairs of what look to be counter-rotating rotors fixed in the horizontal position.

As with the V-280, and the U.S. Marines’ V-22 Osprey, the S-A1 tilt rotor pivots the rotors to face forward in flight, relying on wings for lift while the rotors serve as propellers. With the rotors in the upward-facing position, the S-A1 can take off and land like a helicopter or a recreational drone.

Image source: Hyundai Motor Co.

The S-A1 will employ a human pilot initially, but Hyundai plans for the aircraft to become autonomous eventually. It has seats for four passengers, so it is much smaller than the V-280, which carries a dozen passengers at speeds as high as 320 mph. Hyundai has provided no technical details on the S-A1’s battery capacity or the power of the motors.

Unlike aircraft manufacturers such as Bell Textron, Inc., maker of the V-280, Hyundai is experienced building vehicles in volume, at low cost. Hyundai has also been active in its development of electric vehicles, which gives it a foundation in that technology for application to this air taxi concept.

Image source: Hyundai Motor Co.

“Hyundai is our first vehicle partner with experience of manufacturing passenger cars on a global scale,” said Eric Allison, head of Uber Elevate. “We believe Hyundai has the potential to build Uber Air vehicles at rates unseen in the current aerospace industry, producing high quality, reliable aircraft at high volumes to drive down passenger costs per trip.” 

Though the partners announced no timetable, Hyundai expects that Uber will develop a transportation network that will make the S-A1 a viable product. “We are looking at the dawn of a completely new era that will open the skies above our cities. Urban Air Mobility will liberate people from grid-lock and reclaim time for people to invest in activities they care about and enjoy,” said Jaiwon Shin, Executive Vice President and Head of Urban Air Mobility Division at Hyundai Motor Company.

Dan Carney is a Design News senior editor, covering automotive technology, engineering and design, especially emerging electric vehicle and autonomous technologies.

new-thin-films-show-promising-properties-for-photovoltaics,-leds

Researchers are constantly searching for new materials that can make electronic devices more efficient and cheaper to build, especially as silicon nears the limits of its performance. To this end, scientists at the University at Buffalo have created new thin films from a little-used but abundant material, the performance of which show promise for use in electronic and optical applications such as photovoltaics and light-emitting diodes (LEDs).

This film, University of Buffalo, Photovoltaics, LEDs, nontoxic material, develop films, strong light absorption, charge transport
A barium zirconium sulfide thin film created by a research team at the University at Buffalo that shows novel electronic properties. (Image source: Douglas Levere / University at Buffalo)

The team, led by Hao Zeng–professor of physics in the university’s College of Arts and Sciences–created the films using barium zirconium sulfide, a category of materials known as chalcogenide perovskites. These materials have benefits over others used in electronic and photovoltaic devices, including that they are nontoxic and found naturally and abundantly in the earth. 

Indeed, researchers have been exploring the use of perovskite-based thin films in solar cells for years because of their potential for higher efficiency and less cost in cell production.

The films developed by Zeng’s team combine significant light absorption with good charge transport, which makes them well-suited for applications in which silicon is used today. “For many decades, there have been only a handful of semiconductor materials that have been used, with silicon being the dominant material,” Zeng said. “Our thin films open the door to a new direction in semiconductor research. There’s a chance to explore the potential of a whole new class of materials.”

Old Material, New Use

The researchers were not the first to discover barium zirconium sulfide and its usefulness; the compound has been used in applications dating back to the 1950s, but has been largely overlooked by scientists. “It has existed for more than half a century,” Zeng said. “Among earlier research, a company in Niagara Falls produced it in powder form. I think people paid little attention to it.”

However, powder is not the best form for the applications for which Zeng and his team wanted to use the material, so they set out to explore the material’s potential for thin films. The researchers crafted their films by using a laser to heat up and vaporize barium zirconium oxide, then depositing that vapor on a sapphire surface. This formed a film that was then converted into the final material through a chemical reaction called sulfurization.

The team published a paper on its work in the journal Nano Energy.

Researchers think their films will be especially useful for solar-energy generation, as research suggests this type of perovskite material would be much more efficient at converting sunlight into electricity than traditional silicon-based materials with identical thicknesses, said Haolei Hui, a physics PhD student and one of the team’s researchers. “Semiconductor research has traditionally been highly focused on conventional materials,” he said. “This is an opportunity to explore something new. Chalcogenide perovskites share some similarities to the widely researched halide perovskites, but do not suffer from the toxicity and instability of the latter materials.”

Elizabeth Montalbano is a freelance writer who has written about technology and culture for more than 20 years. She has lived and worked as a professional journalist in Phoenix, San Francisco and New York City. In her free time she enjoys surfing, traveling, music, yoga and cooking. She currently resides in a village on the southwest coast of Portugal.

don’t-forget-about-standby-power

Standby power refers to the electronic and electrical power consumed by systems when the primary operational functions are waiting to be activated. Standby power needs are often overlooked by systems designers but are crucial considerations to ensure power is available for the smart devices that make up the Internet of Things (IoT).

Consider the design of a smart home, a dwelling that consumes zero net energy. To maintain zero net power consumption, the smart home must be capable of monitoring and controlling the main energy consumers – e.g., HVAC and lighting – as well as interfacing with energy sources such as solar panels/batteries and the power grid. Adding control and monitoring intelligence to the home will itself require energy. The trick is to make sure that the controlling and monitoring electronics don’t consume more power than the devices themselves. One part of this trick is to make sure that the smart systems pay attention to stand-by loads, those mischievous power draining loads consumed by electronics and electrical appliances even when they are turned off (but still drawing power in standby mode).

In addition to – or often part of – controlling and monitoring electronics, connectivity transceivers like RF and wireless are another reason why standby power awareness are so important. Most of our modern appliances and control devices constantly consume a trickle of power to be ready to perform updates, connect to edge or cloud servers, listen for our voice commands, and the like.

Numerous studies attest to the amount of energy lost from devices not in use due to standby power consumption. According to a report from the Natural Resources Defense Council (NRDC), an international nonprofit environmental organization, always-on but inactive devices can cost Americans $19B annually. That comes to about $165 per U.S. households on average—and 50 large (500-megawatt) power plants’ worth of electricity.

Further, Berkeley Labs notes that standby power is roughly responsible for 1% of global CO2 emissions.

What are the best ways to reduce the impact of standby power? Let’s consider one approach that looked promising but so far has failed and another more integrated approach that has proven to be successful.

Image source: Natural Resources Defense Council (NRDC)